UNIVERSITA DEGLI STUDI DI MILANO
FACOLTA DI SCIENZE E TECNOLOGIE

Dipartimento di Matematica

Formalizing the Operational
Semantics of the m-Calculus

A Solution to the Concurrent Calculi
Formalization Benchmark (part 2)

Relatore: prof. Alberto Momigliano

Tesi di Laurea di: Gabriele Cecilia
Anno accademico 2022/2023

Abstract

This thesis presents a formalization of two different operational semantics of
the m-calculus within the proof environment Beluga and provides a solution to the
second challenge of the Concurrent Calculi Formalization Benchmark. Specifically,
this challenge involves estabilishing a correspondence between silent transitions in
the labelled transition system semantics and reductions in the reduction semantics
of the m-calculus. The proof environment employed, Beluga, has been developed at
McGill University in Montreal, Canada, and allows specification of formal systems
using a foundation of contextual modal logic.

To begin, we offer an overview of the role of formalization in program verification
and in the metatheory of programming languages. We also delve into the details of
the Concurrent Benchmark, focusing on its purpose of exploring the state of the art
in the mechanization of process calculi, finding the best practices to address their
typical issues and improving the tools for their encoding.

Next we introduce the syntax and semantics for the subset of the m-calculus
featured in the challenge, following the existing literature (particularly, “The 7-
calculus - a Theory of Mobile Processes” by Sangiorgi & Walker). Additionally,
we provide a comprehensive informal proof of the theorems regarding semantics
equivalence.

Subsequently, we present a HOAS formalization in Beluga of the aforementioned
results. Definitions and theorems of the benchmark problem are introduced together
with a gradual explanation of the Beluga constructs and features used. Furthermore,
we address the challenges encountered during the encoding process and the corre-
sponding solutions devised.

Finally, we draw the conclusions of the accomplished work. We provide an evalu-
ation of the choice of the proof assistant Beluga, together with a discussion about
the contributions of our work: in summary, this thesis offers a first formalization of
semantics equivalence in the m-calculus and introduces a couple of useful encoding
techniques for specific constructs, such as telescopes and induction over two argu-
ments. Additionally, we present a brief overview of some related pre-existing works
and some potential directions for future research studies.

Contents

(1__Introduction!

2 The 7m-Calculus and its Operational Semantics|
2.1 Syntax| oL

[2.2.2 Labelled Transition System Semantics]
[2.3 Equivalence ot Reduction and LTS Semantics)
[2.3.1 Theorem 1: 7-Transition Implies Reduction|
[2.3.2 Theorem 2: Reduction Implies 7-Transition|

[3 Beluga Formalization|
ntax| e e e e e e e e e

[3.2.2 Labelled Transition System Semantics|
[3.3 Equivalence of Reduction and LTS Semantics|
[3.3.1 Theorem 1: 7-Transition Implies Reduction|
[3.3.2 Theorem 2: Reduction Implies 7-Transition|

(A Equivalence between Early and Late Semantics|

[B__Proof of Lemma 2.6l

CF Tzat 1 RS

60

66

75

Chapter 1

Introduction

Nowadays, programs and software are part of the daily life of every individual. The
widespread use of smartphones, computers and smart technology in homes and work-
places is largely dependent on programming. The internet, social media platforms
and satellite networks allow global communication, commerce and entertainment.
Furthermore, emerging technologies such as artificial intelligence and machine learn-
ing are opening new development frontiers. Programming is transitioning from being
a mastery performed only by experts into becoming a regular task involving a large
community of developers.

As the production of new and increasingly advanced programs is becoming more
and more significant, so does the need for verification of program correctness. Pro-
gramming errors are fairly common and can occasionally lead to catastrophic events,
resulting in loss of lives and financial damages. For instance, we mention the AT&T
Network crash in 1990, where a bug in a C program caused the shutdown of the
USA’s largest telephone network, or the explosion of the Ariane 5 rocket in 1996,
attributed to errors in the software design [17]. These incidents highlight the critical
importance of implementing testing and verification procedures in software devel-
opment.

While practices like delivering a thorough project documentation and dividing
code development among different teams can contribute to better code quality, errors
can still arise at any stage of software production. Formal methods offer a solution
by enhancing software reliability throughout the entire development process. More
specifically, the formalization of a program consists in providing a mathematical
description of the program specifications and properties. This process may include
modeling the system in a mathematical environment, defining program specifica-
tions, testing the software, and verifying its correctness through proofs. Formal-
ization is typically executed through the use of a proof assistant, a software which
provides the required mathematical infrastructure and usually has a graphical in-
terface guiding the user towards the search for proofs with tactics or computation
holes.

A niche domain of formal methods application is the metatheory of programming
languages. Being able to reason about the language in which a software is written
is necessary to verify static analysis tools (such as type systems), compilation and
optimization. A well-known issue in this field lies in the representation of language
constructs that bind variables: to address this problem, various techniques have been
developed, such as De Bruijn indices [5], nominal techniques [|7] and higher-order

4

abstract syntax (HOAS) [18]. In order to raise general interest on the mechaniza-
tion of programming languages and to devise better tools and strategies to address
specific encoding issues, challenges like the POPLMark [1] or the Concurrent Calculi
Formalization Benchmark [12] have been published throughout the years.

The POPLMark challenge [1] is a collection of benchmarks about programming
language mechanization published in 2005. Its purpose was to measure the progress
in formalizing programming language metatheory and to simplify proofs in this
domain by finding the most appropriate techniques to solve recurring problems. The
challenge successfully increased general interest in this field, with many researchers
providing their own solutions to the benchmark problems.

Following in the footsteps of the POPLMark challenge, a new set of benchmarks
related to concurrency mechanization [12] has been published. Concurrency is the
branch of computer science in which multiple processes can be executed indipen-
dently or interact with each other; process calculi are an example of mathematical
models that allow the formalization of concurrent systems. The Concurrent Calculi
Formalization Benchmark aims at exploring the state of the art in the formaliza-
tion of process calculi, finding the best practices to address their typical issues and
improving the tools for their mechanization.

The authors of the Concurrent Calculi Formalization Benchmark identified three
key aspects which usually cause difficulties when mechanizing concurrency theory:

1. Linearity: the notion that a channel must be used exactly once in a process.

2. Scope extrusion: the fact that a process can send restricted names to another
process, thus expanding their scope.

3. Coinductive reasoning: the mechanization of proofs regarding processes which
have infinite behaviours, usually addressed with a technique called coinduction.

The authors designed three challenge problems which deal with each of these aspects
separately. As a consequence, the comparison of different methods used to solve
these problems is going to be more straightforward and effective.

This thesis provides a solution to the second problem of the benchmark, by for-
malizing the inherent definitions and demonstrations through the proof environment
Beluga.

In order to formalize results regarding the metatheory of programming languages,
the selected proof environment must provide a mathematical infrastructure capable
of representing the language’s syntax, defining the judgements describing its seman-
tics, and allowing to formulate and prove theorems about it. Specifically, syntax
is usually encoded through algebraic datatypes; semantics is encoded through in-
ductive definitions and recursive functions; proofs are conducted using structural or
well founded induction. However, a significant issue to be addressed consists in the
method used to represent bindings of the object language [13].

One commonly used technique is based on De Bruijn indices [5]. In this ap-
proach, occurrences of a variable in a term are denoted by a natural number, repre-
senting the number of abstractions that must be traversed to bind that occurrence.
De Bruijn indices offer the considerable advantage that each term has a unique rep-
resentation, thus eliminating concerns about a-equivalence. However, interpreting

de Bruijn indices may not be immediately intuitive, and the definition of capture-
avoiding substitution requires careful handling of shifting indices.

Nominal techniques, introduced by Pitts and Gabbay |[7], present an alternative
approach. Given a countably infinite set of names A, binders are represented by
names that can be swapped via finite permutations over A. a-equivalence is defined
in terms of invariance of names under specific permutations, and capture-avoiding
substitution is replaced by permutations themselves. While nominal techniques do
not present a unique representation of terms, the large use of finite permutations
simplifies mechanization aspects due to their favorable algebraic properties.

In higher-order abstract syntaxz [18], binders of the object language are repre-

sented by binders occurring in functions of the metalanguage. The major advantage
of this approach is that issues related to a-renaming and substitution are delegated
to the metalanguage developers: the formalizer inherits the solutions of these prob-
lems directly from the metalanguage [20], thereby avoiding the need to state and
prove technical lemmas about binders, as required by other approaches. This is the
main reason which led us to the choice of the HOAS technique for the formalization
of m-calculus in this thesis.
While general-purpose proof envoronments such as Coq are built on powerful de-
pendent type theories and can implement HOAS, they lack direct support for many
intricate aspects regarding mechanization of formal systems, often requiring users
to rely on techniques or libraries to address them [20]. Therefore, we opted for the
proof assistant Beluga ([19], [20], [21], |22]), which sacrifices some of the computa-
tional power present in Coq but provides a sophisticated infrastructure for handling
variables and assumptions automatically, thus streamlining the mechanization pro-
cess. In Chapter [3] we will provide an overview of the features of this proof assistant,
along with the formalization of our work.

Chapter 2

The m-Calculus and its
Operational Semantics

The m-calculus is an example of process calculus, a formal mathematical framework
for modeling and reasoning about concurrent systems. Processes are the funda-
mental units of computation and they interact with each other through channels.
An essential feature of the m-calculus is that processes can transfer channel names
to each other, transforming their interaction network; this renders the w-calculus
suitable to describe systems whose interconnections vary over time.

More specifically, the m-calculus allows declaring that a certain channel name is
local to some process; this means that it can be used by this process only. However,
the channel name can be sent to some other process: the result is that it becomes
local to both processes, and each of them can use it. The phenomenon of the
expansion of the scope of a channel name is referred to as “scope extrusion”.

Formalizing semantically correct operational rules that encode scope extrusion is
typically a challenging issue. Historically, researchers have developed various mech-
anizations of scope extrusion, each managing a-conversion or binders differently.
Additionally, alternative approaches which avoid dealing with scope extrusion have
been elaborated.

The second challenge of the Concurrent Calculi Formalization Benchmark [12]
involves reasoning about this topic. The language used in this challenge is a sim-
plified version of the m-calculus without constructs for match, replication and sums.
The challenge requires defining two distinct operational semantics for this calculus
- a labelled transition system (LTS) semantics, which directly addresses scope ex-
trusion, and a reduction semantics, which circumvents it - and proving that they
are equivalent up to structural congruence. This chapter presents the description
of the language and the statement and proof of the theorems regarding semantics
equivalence.

2.1 Syntax

We assume the existence of a countably infinite set of names, represented by the
symbols z,y, The set of processes Proc is defined by the following syntax:

PQ =0 | z(y).P | zyP | P|Q | (vx)P

7

2.1. SYNTAX

The symbol O refers to the empty process, which cannot perform any transition.
The input prefix x(y).P represents a process which can receive a name through the
channel x and then behave as P, with the newly received name replacing y in P.
The output prefix Ty.P corresponds to a process which can send the name y through
the channel x and then behave as P. The parallel composition P |) represents a
process where both components P and () can act indipendently or interact with
each other. The restriction (vx)P acts as the process P, but the name z is declared
to be local to the process P and its usage is restricted to P only.

The input prefix x(y).P and the restriction (ry)P both bind the name y in
P; in such cases, we can say that any occurrence of y in P is bound. Any other
occurrence of names in processes is said to be free. More specifically, we can define
the set of free names occurring in a process P, denoted as fn(P), and the set of bound
names occurring in a process P, denoted as bn(P), by induction on the structure of
processes as follows:

fn(0) =0 bn(0) =0
fn(z(y).P) = {z} U (fn(P)\ {y}) bn(z(y).P) = ({y} N fn(P)) U bn(P)
fn(zy.P) = {z,y} U fn(P) bn(zy.P) = bn(P)
fn(P|Q)=1fn(P) U fn(Q) bn(P | Q) = bn(P) U bn(Q)
fn((vz)P) = fn(P) \ {z} bn((vz)P) = ({z} N fn(P)) U bn(P)

Figure 2.1: Definition of free and bound names in processes.

2.1.1 Bound Names and Variable Convention

In languages featuring bound variables, terms which differ only by the names as-
signed to bound variables are called a-convertible terms [4]. Such terms carry the
same meaning and for this reason they are often identified. In the informal de-
scription of a language, a-conversion is sometimes introduced in a mathematically
rigorous way, for example by partitioning the set of terms and considering its equiv-
alence classes. In some cases, it is introduced as part of the language’s semantics.
In other situations, developers include it in some variable conventions, such as the
Barendregt conventions for the A-calculus [2]. Variable conventions might be difficult
to justify formally (see [25] for an example) but often lead to simpler proofs and less
reasoning about variables. Such different informal approaches to the representation
of bound variables result in different formalizations as well.

This holds particularly true for the m-calculus, where a variety of historical ap-
proaches to this issue have led to different presentations of the calculus. For example,
Parrow [16] explicitly incorporates a-equivalence into the semantics as a congruence
rule. Milner et al. [15] or Honsell et al. [10] do not directly identify a-convertible
processes; instead, they integrate process identification within LTS semantics rules.
Sangiorgi & Walker [23] adopt a different approach, relying on two variable conven-
tions: one stating that “processes that are a-convertible are identified”, and another
stating that “we assume that the bound names of any processes or actions under
consideration are chosen to be different from the names free in any other entities
under consideration”. These conventions entail taking the quotient of the set of

8

2.2. SEMANTICS

processes to include only one instance of a-convertible processes and disallowing
processes with both free and bound occurrences of the same name.

Our approach for this thesis consists in adopting a less restrictive version of the
variable conventions mentioned above. Specifically we assert that, given a process,
it is possible to a-rename the bound occurrences of variables within it; additionally,
we state that the bound names of any processes or actions under consideration can
be chosen different from the names free in any other entities under consideration.
Unlike Sangiorgi & Walker, we do not exclude processes with both free and bound
occurrences of the same name; instead, we permit to a-convert such processes at
need. While we are not going to build a mathematical framework to justify these
conventions, we believe they offer an intuitive vision of the role of binders in processes
and observe that they will play a significant role in the theorem proofs.

2.2 Semantics

2.2.1 Reduction Semantics

In reduction semantics, structural congruence relates “syntactically” equivalent pro-
cesses; then, processes are reduced up to syntactic equivalence. Reduction does not
explicitly handle scope extrusion; instead, it implicitly relies on congruence to ad-
dress this aspect.

Structural Congruence

We define the congruence relation = as the smallest relation over Proc, closed un-
der compatibility (%) and equivalence laws (%), satisfying the following axioms:

PAR-Assoc PAr-UNIT Par-CoMmm
PIQIR) =(P|Q)|R rPlo=P PlQ=Q|P
Sc-EXT-ZERO S?gﬁ(gﬁ Sc-EXT-RES
(vz)0 =0 (va)P|Q = (va)(P | Q) (va)(vy)P = (vy)(va)P

(%)

C-In C-Ovut C-Par C-REs
P=qQ P=qQ P=P P=qQ
z(y).P = z(y).Q 7y.P = 7y.Q PlQ=P|Q (vz)P = (vz)Q

CR C-SyMm C-TRANS
REE P=qQ P=Q Q=R
P=P Q=P P=R

Figure 2.2: Structural congruence rules.

2.2. SEMANTICS

The first three rules are commutative monoid axioms for parallel composition. The
second set, of three rules involves scope extrusion and essentially asserts that the spe-
cific placement of binders is relatively unimportant, provided they refer to the same
occurrences: for instance, the Sc-EXT-PAR rule states that the processes (va)P | @
(where the scope of the name z is restricted to P) and (vz)(P | @) (where the scope
of z is extended to P | Q) are syntactically equivalent, if = does not occur freely in Q.
The compatibility rules (x) ensure that processes with congruent subprocesses are
also congruent, while equivalence rules (%*) establish congruence as an equivalence
relation.

Note that a second C-PAR rule with a different premise (congruence of processes
on the right side of parallel compositions) is not needed. This is because it can be
derived through a combination of monoid axioms and equivalence rules.

Reduction

We define the reduction relation — as the smallest relation over Proc satisfying the
following rules:

R-Cowm }1}__P>Ag
Ty P|x(2).Q — P[Q{y/z} PIR— QIR
R-REs R-STrRUCT
P—=Q P=P P —Q Q' =Q
(ve)P — (vx)Q P—Q

Figure 2.3: Reduction rules.

The R-Cowm rule performs the interaction of a pair of input and output prefix
processes exchanging some name through the same channel; the notation Q{y/z}
represents capture-avoiding substitution of y for z in the process). The R-PARr and
R-REs rules ensure that reduction can proceed underneath a parallel composition
or restriction. The R-STrRuCT rule states that congruent processes can be reduced
to congruent processes.

Note that a second R-PAR rule with a different premise (reduction of processes on
the right side of parallel compositions) is not needed. This is because it can be
derived through a R-STRrRuCT rule.

2.2.2 Labelled Transition System Semantics

In LTS semantics, process behaviour is given by transitions: processes make transi-
tions through actions, returning another process. Transitions represent changes in
the state of processes following input/output or interaction with other processes.
We present the early LTS semantics introduced in the challenge.

10

2.2. SEMANTICS

Early Semantics

The set of actions Act is defined by the following syntax:

a:=z2(y) | zy | zly) | T

The input action z(y) represents the input of the name y through the channel x.
The free output action action Ty represents the output of the free name y through
the channel z. The bound output action Z(y) represents the output of the bound
name y through the channel x. The internal action T represents communication
between two processes exchanging names.

Analogously to processes, we can define bound and free occurrences of names
in an action. Given an input action x(y) or a free output action zy, we can say
that both x and y occur free; given a bound output action Z(y), x occurs free and y
occurs bound; there are no name occurrencies in an internal action 7. We denote as
bn(«), fn(«) and n(«) the sets of bound names, free names and names occurring
in an action « respectively.

We define the transition relation —(:)—> as the smallest subset of Proc x Act x Proc
which satisfies the following rules:

S-IN S-Out
x(z).P W, P{y/z} zy.P 2 P
S-PAR-L S-PAR-R
PSP bn(a) N fn(Q) =0 Q5 qQ bn(a) N fn(P) =0
PlQ = P'|Q PlQ = P|
S-Com-L S-CoM-R
zy / z(y) / z(y) / zy /
P=P Q—Q PP Q3Q
PlQ = P|Q PlQ = P|Q
S-RES ~ S-OPEN
PSP z¢n(a) PSP 24z
(v2)P = (vz)P' (vz)P e, pr
. S-CLOSE-L S-CLOSE-R
P p Qg 2 ¢ Q) PXhp QX s fa(P)
PlQ = (v2)(P'| Q) PlQ = (v2)(P'| Q)

Figure 2.4: Early transition semantics rules.

The S-In and S-OuT rules describe transitions of input/output prefix processes.
The two S-PAR rules represent the independent progression of one of the two pro-
cesses in a parallel composition. We note that the side condition bn(a) N fn(Q) = 0,
which ensures that no undesired variable captures occur, is necessary in this pre-
sentation; however, it could be omitted if more restrictive variable conventions were

11

2.2. SEMANTICS

employed. The two S-Cowm rules represent interaction of the two processes in a
parallel composition; since we are describing the early semantics, no substitution is
present in the conclusion, as it is assumed to have been performed earlier through a
S-In rule. The S-REs rule represents transition of a restriction through some action
a, provided the restricted name does not appear in . The S-OPEN rule introduces
bound output transitions. The two S-CLOSE rules describe the scenario in which a
channel name, initially restricted to one component of a parallel composition, is sent
to the other component: the result is a process where the scope of the restricted
name is extended to the entire parallel composition. We observe that, in the bound

output transition P 2, pr , the name z is bound in the action Z(z) and in the
process P but may occur free in the process P’: this fact is necessary to be able to
express scope extrusion. Although it does not contradict our variable convention,
we note that a more restrictive convention would require an exception to allow both
free and bound occurrences of the same name.

Late Semantics

While the early semantics has been presented in the previous section, it is worth not-
ing that there are other versions of labelled transition system semantics definitions
for the m-calculus in the literature. One common alternative is the late semantics,
which presents a different approach to modeling the behavior of processes. In con-
trast to the early semantics, the late semantics delays the substitution of names
received in interactions as much as possible, namely during the execution of the
S-Com rule. “It is a matter of taste which semantics to adopt” [16], as they are
equivalent (see Appendix [A| for a formal proof of the equivalence). In the present
paragraph we are going to outline the corresponding modifications of the late se-
mantics with respect to the early semantics.

The syntax of the set of actions Act is the same as in the early semantics. There
is a slight change in the definition of the sets bn(«) and fn(«): unlike the previous
case, the name y occurring in an input action z(y) is considered bound.

Regarding transitions, the rules S-IN, the two S-Cowm rules and the two S-CLOSE
are replaced by the following:

S-IN
x(2).P ", p
S-Com-L S-Com-R
PP QX P p Q%
PlQ = P'|Qy/z} PlQ = Py/z}| Q'
~ S5-CrosE-L S-CLOsE-R
pXp M pXp QI8
PlQ = (v2)(P'] Q) PlQ = (v2)(P'| Q)

Figure 2.5: Late transition semantics rules.

12

2.3. EQUIVALENCE OF REDUCTION AND LTS SEMANTICS

In the S-IN rule, there is no substitution of the input name within the process
P: instead, the variable z, which might occur free in P, serves as a placeholder
for the name that will later fill such spot. Only when an input prefix and output
prefix communicate through a S-Cowm rule, the actual input name is deduced and
then substituted. Regarding the S-CLOSE rules, the early semantics included a side
condition z ¢ fn(Q), with @ being the process performing the input transition: in
case the name z received as input already occurred free in (), then all the occurrences
of z in the resulting process (vz)(P’ | Q") would be bound, thus leading to undesired
variable capture. However, since the late version of the S-IN rule does not perform
any substitution, there is no input name to be careful about and the side condition
in the late S-CLOSE rules is not needed anymore.

2.3 Equivalence of Reduction and LTS Semantics

The goal of the challenge consists in proving the following theorems:
Theorem 1. P 5 Q implies P — Q.
Theorem 2. P — Q implies the existence of a Q' such that P = Q' and Q = Q.

The first theorem states that every transition through a 7 action corresponds to
a reduction. The second theorem states that, given a reduction of the process P
to the process (), P is able to make a 7-transition to some process ()’ congruent
to (). Thus, these theorems show that these two semantics are equivalent up to
structural congruence. In this section we outline the key steps of the proof for the
two theorems, providing the full details of one extensive proof in Appendix

2.3.1 Theorem 1: 7-Transition Implies Reduction

Before proving the first theorem, we state three preliminary lemmas which describe
rewriting (up to structural congruence) of processes involved in specific transitions.
Lemma 1.1. Rewriting of processes involved in input transitions

IfQ =), Q' then there exist a finite (possibly empty) set of names wy, ..., w, (with
x,y #w; Vi =1,...,n) and two processes R, S such that

Q= (vwy)...(vwy,)(x(2).R|S) and @Q = (vwq)...(vw,)(R{y/z}|S).

Lemma 1.2. Rewriting of processes involved in free output transitions
If Q 25 @', then there exist a finite (possibly empty) set of names wy, ..., w, (with
x,y #w; Vi =1,....n) and two processes R, S such that

Q= (vwy)...(vw,)(zy.R | S) and Q' = (vwy)...(vw,)(R|S).

Lemma 1.3. Rewriting of processes involved in bound output transitions

IfQ 26, Q)', then there exist a finite (possibly empty) set of names wy, ..., w, (with
x & {z,wy,...,w,}) and two processes R, S such that

Q = (vz)(vwy)...(vw,)(Zz.R | S) and Q' = (vwy)...(vw,)(R | S).
We prove Lemma [1.1}
Proof. Let Q =), @’ (T1). We proceed by induction on the structure of Q.

13

2.3. EQUIVALENCE OF REDUCTION AND LTS SEMANTICS

e () = 0 : by hyphotesis 0 M @', but the process 0 does not undergo any
transition, so we have a contradiction.

e () = w(z).P : by inversion on the transition (T1) through the rule S-In, we
obtain that w = x and ' = P{y/z}; the transition (T1) can be rewritten as

2(2).P Y ply/a.

We observe that z(z).P = z(z).P | 0 by Par-UniT and P{y/z} = P{y/z} |0
also by PAR-UNIT. Therefore, taking an empty set of names and setting R := P
and S := 0, the conclusion holds.

e () = wz.P: by hypothesis wz.P @) @', but this process can only undergo
transitions via free output actions, so we have a contradiction.

e) = Q1 | Qa: by inversion on Q1 | Q2 M ()" we obtain two subcases
depending on the transition rule used.

— S-Par-L: the transition (T1) can be rewritten as @ | Q2), Ry | Qo

we also have that y ¢ fn(Q2) and that ¢4), Ry (T2).

Applying the inductive hypothesis to (T2), we obtain that there exist
names wi, ..., w, different from x,y and processes R, S such that

Q1 = (vw)(z(2).R | S), denoted as (H1), and

Ry = (vw)(R{y/z} | S), denoted as (H2), with (vw):= (vw;)...(vw,).
For the variable convention, we can assume that the w; are not free in
Q2. Finally, through a chain of congruences we can show that @1 | Qs
and Ry | @2 have the desired form, thus proving the thesis.

We consider Q) | Q2. First we take (H1) and apply the C-PAR rule:

Q1 = (vw)(z(2)-R|S5) (H1)

Q@ = (o)) R19) & (1)

We then work on the right hand side of the congruence (C1): since the
names w; do not occur free in ()5, we can apply the Sc-ExT-PARr rule n
times, in combination with the C-TRrRANS rule. At the end of this process,
we obtain the following congruence, denoted as (C2):

((rw)(z(2).R[9)) [Q2 = (vw)((z(2).R[S5)|Q2).

By transitivity - i.e. by applying C-TRANS to congruences (C1) and (C2)
- we obtain that Q1 | Q2 = (vw)((z(2).R|S)|Q2) (C3).

We finally work on the right hand side of the congruence (C3). First

we consider the process ((z(z).R | S) | Q2), which is embedded in n
restrictions, and apply the C-Sym and PAR-Assoc rules:

PAR-ASsocC
C-SyMm

2(2)-R | (5]Q2) = (x(2)-R]|5) | Qa
((2).R[S) | Q2 = z(2).R | (§]Q2)

By applying the C-REs rule n times, we obtain the congruence (C4):

14

2.3. EQUIVALENCE OF REDUCTION AND LTS SEMANTICS

(rw)((z(2).R|5) | Q2) = (vw)(2(2)-R [(5] Q2)).
By transitivity on the congruences (C3) and (C4) we obtain the desired
congruence:

(C3) (¢4
Q| Q2 = (vw)(x(2).R|(5]Q2))

C-TRANS

The procedure for R; | @)y is analogous: starting from (H2) instead of
(H1), we obtain that Ry | Q2 = (vw)(R{y/z} | (S| @2)).

— S-PAR-R: the proof is similar to the previous case, requiring some addi-
tional application of monoid axioms for parallel composition.

e () = (vz)P: by inversion on the transition (vz)P RN @' through the rule
S-REs, we obtain that Q" = (vz)P’, z ¢ {z,y} and that P W, pr (T2); the
transition (T1) can be rewritten as (vz)P W), (vz)P'.

Applying the inductive hypothesis to the transition (T2), we obtain that there
exist names wy, ..., w, different from z,y (and z, up to renaming) and processes
R, S such that P = (vw)(xz(u).R | S) and P' = (vw)(R{y/u} | S).

Through a single instance of the C-REs rule, we deduce that

(v2)P = (vz)(vw)(z(u).R | S) and (vz)P' = (vz)(vw)(R{y/u} | S), hence
the conclusion.

O

Lemmas [1.2] and are proved by induction on the structure of processes as well,
with a different base case. The base case for Lemma [1.2| consists in the output prefix
case, analyzed through the S-Out rule. The base case for Lemma [1.3| consists in
restriction, analyzed through the S-OpPEN rule; we observe that the presence of a free
output transition as an hypothesis requires the application of Lemma[I.2] Since the
proof structure is essentially the same, details are omitted.

Finally, we prove Theorem [I] In order to improve readability, we are going to cover
the most significant steps, leaving details to the reader for cases which do not offer
anything new. We recall the statement of the theorem:

Theorem . P 5 Q implies P — Q.

Proof. Let P 5 Q (T1). We proceed by induction on the structure of this transi-
tion.

e S-PAR-L: the transition (T1) is rewritten as P, | R = Q1 | R; we have that
P 5 Qy (T2).

We apply the inductive hypothesis to the transition (T2), obtaining P; — Q.
Through the rule R-PAR, we finally obtain P, | R — Qi | R.

e S-PaR-R: the transition (T1) is rewritten as R | P, = R | Q2; we have that
P, 5 Qy (T2).

15

2.3. EQUIVALENCE OF REDUCTION AND LTS SEMANTICS

As in the previous case, we apply the inductive hypothesis to the transition
(T2), obtaining P, — Q3. Through the rule R-PAR, we obtain that
P, | R — Q| R. Finally we conclude by applying a R-STRUCT:

R’PQEPQ’R PQ‘R—)Q2|R Qz’RER‘QQ
R|P, = R|Q

S-Cowm-L: the transition (T1) is rewritten as P, | P, = Q1 | Qo; we have that
Pli?J_)Ql andthatPQMQg.

We apply Lemmas [I.1] and [I.2] to rewrite the processes involved in these input
and output transitions, obtaining the following congruences:
Py
Q1

(vw)(zy.Ry | S1); Py
(W)(Rl | Sl); Q2

(vo)((2)Ra | 52);
(vo)(Rao{y/z} | 52).

Like before, (vw) denotes (vwy)...(vw,) and (vv) denotes (vuvy)...(vv,,). We
can assume, up to a-renaming, that each w; is different from v;, that each w;
does not occur freely in the process (z(z).R2 | S2) (as a consequence, w; does
not occur freely in Ro{y/z} | Se as well, since w; # y for Lemma 1.1), and
that each v; does not occur freely in (zy.R; | S1) (hence in Ry | Sh).
Through the rule R-Cowm, we obtain the following reduction (R1):

R-Com

zy.Ry | x(2).Ry — Ry | Ro{y/z}

We then work on the processes involved in this congruence, gradually adding

the subprocesses and binders present in P; and ();, with the goal of reaching
a reduction between processes congruent to Py | P, and @ | @2 and then
applying a R-STRucT rule.

First of all, we apply the R-PARr rule to the reduction (R1) to add the process
S1; we obtain that (Zy.Ry | x(2).Re) | S1 — (Ry | Rof{y/z}) | S1.

By using the monoid axioms for parallel composition, it can be shown that
(zy.Ry | x(2).Ry) | Sy is congruent to (zy.Ry | S1) | x(z).R2, and that
(Ry | Ro{y/z}) | Sy is congruent to (Ry | S1) | Ra{y/z}. Applying the R-
STrUCT rule, we obtain that (Zy.R; | S1) | x(2).Ra — (Ry | S1) | R2{y/z}.

Similarly, we add S5 to the right and obtain the following reduction:
(zy- Ry | S1) [(2(2).Ry | S2) — (Bu|S1) | (Re{y/2}]5:).

Then, we apply the R-REs rule to introduce the restriction (vw,) on both
terms, obtaining the following reduction:

(vwn)((zy Ry | S1) | (2(2).Bs | S)) — (vwn)((By | S1) | (Raly/2} | S2)).
Now, since w,, does not occur freely in (z(z).Ry | S2) or (Ro{y/z} | S2),
we reduce the scope of w,, and move (vw,) to the left process of the parallel
compositions: we obtain that (vw,)((zy.Ry | S1) | (z(z).Ry | S2)) is congruent
to ((vw,)(Zy.Ry | S1)) | (x(2).R2 | S2) through Sc-EXT-PAR (same for the
other process). Using R-STRUCT, we obtain that

((vwn)(zy.Ry [S1)) | (2(2)-Ry | S2) = ((vwn)(Ry [51)) | (Ra{y/2} [S2).

16

2.3. EQUIVALENCE OF REDUCTION AND LTS SEMANTICS

Similarly, we can introduce all the other binders. Thus, we obtain the reduc-
tion below, from which we reach the conclusion with a final R-STRUCT:

((vw)(zy-By | S1)) | ((vo)(z(2).Ry | S2)) —
= ((vw) (B | 51)) | ((v0)(Ra{y/2} | 52))

e S-CoM-R: analogous to the previous case, with some additional congruence
and reduction steps due to the asymmetry of reduction rules.

e S-REs: the transition (T1) is rewritten as (vz)P" = (vz)Q'; we have that
P 5 Q" (T2).
We apply the inductive hypothesis to the transition (T2), obtaining P’ — @)’
Through the rule R-REs, we finally obtain (vz)P" — (v2)Q'.
e S-CLOSE-L: the transition (T1) is rewritten as P, | P, = (v2)(Q1 | Q2); we
have that P, f(fl) @1 and that P, i(—Zl> Qs.
We apply Lemmas [T.1] and [T.3] to rewrite the processes involved in these input
and bound output transitions, obtaining the following congruences:
P = (vz)(vw)(zz.Ry | S1); Py, = (vo)(z(y).Re | S);
Q1= (vw)(Ry | 51); Q2 = (vo)(Rofz/y} | 52).
As before, we can assume that each wj is different from v;, that each w; does
not occur freely in the two processes congruent to P and ()2, and that each v,

does not occur freely in the two processes congruent to P; and ;. Analogously
to the case S-CoM-L, we obtain the following reduction through R-Cowm:

R-CoMm

Zz.Ry | 2(y).Ry — Ri | Ro{z/y}

Then, we proceed exactly as in the case S-Cowm-L, first adding the processes
Sp and Sy, and then the restrictions, obtaining the following reduction:

((vw)(zz.Ry [51)) | ((vo)(x(y)-Re | 52)) —
= ((vw) (B [51)) | ((v0)(Ra{2/y} | 52))

We exploit the fact that three of the processes present in the last reduction
are congruent to P, ()1, and ()2 in order to obtain, through some congruence
axioms and a R-STRuUCT, the following reduction:

((rw)(@2.Ry | S1)) | P2 — Q1| Q2

We apply a rule R-Com to introduce (vz) in both sides of the reduction.
Finally, since z ¢ fn(P,), we can apply a Sc-EXT-PAR to move (vz) to the left
component of the parallel composition. We obtain the following reduction:

(w2)(vw)(@z.Ry [51)) | B = (v2)(Q1 | @)

Observing that the leftmost process is congruent to P, and applying an addi-
tional R-STRUCT, we come to the conclusion.

e S-CLOSE-R: analogous to the previous case, with some additional congruence
and reduction steps due to the asymmetry of reduction rules.

[]

17

2.3. EQUIVALENCE OF REDUCTION AND LTS SEMANTICS

2.3.2 Theorem 2: Reduction Implies 7-Transition

Before proving the second theorem, we state and prove some intermediate results.
We begin by reporting five minor lemmas regarding the existence of free and bound
names in specific transitions.

Lemma 2.1. If P =% P/, then z,y € fn(P).
Proof. Let P 2 pr ; we proceed by induction on the structure of this transition.

e S-OuT: we have zy.P SN P; we immediately conclude that z,y € fn(zy.P).

e S-PAR-L: we have P | @ Ny | Q and we obtain that P Ny 2
By applying the inductive hypothesis on P =% P’ we obtain that z,y € fn(P);
since fn(P | Q) = fn(P) U fn(Q), we conclude that x,y € fn(P | Q).

e S-PAR-R: analogous to the previous case.

e S-REs: we have (vz)P N (vz)P" and we obtain that P 2 P and 2 # .

By applying the inductive hypothesis on P 2 P’ we obtain that x,y € fn(P);
since fn((vz)P) = fn(P) \{z} and z # z, y, we conclude that x,y € fn((vz)P).

O

Lemma 2.2. If P W), P’ then x € fn(P).

Proof. As in the previous lemma, we assume P M P’ and proceed by induction
on the structure of this transition.

e S-IN: we have z(z).P), P{y/z}; we conclude that = € fn(z(2).P).
The other cases (S-PAR-L, S-PAR-R, S-RES) are analogous to the previous lemma.
O
Lemma 2.3. If P e, P, then x € fn(P) and z € bn(P).

Proof. As in the previous lemma, we assume P M P’ and proceed by induction
on the structure of this transition.
e S-OPEN: we have that (vz)P 2, P and we obtain that & #4zand P55 P
By applying Lemma on the last transition we obtain that z,z € fn(P).
Since x # z we can conclude that x € fn((v2)P) and z € bn((vz)P).

The other cases (S-PAR-L, S-PAR-R, S-RES) are analogous to the previous lemma.
m

Lemma 2.4. If P> P, o ¢ n(a) and x & fn(P), then x ¢ fn(P’).

Proof. Let P % P, with = ¢ n(a) and ¢ fn(P). We proceed by induction on the
structure of the transition.

e S-IN: we have z(w).P 0N P{y/w}, with x # y, z and = ¢ fn(z(w).P).
x ¢ fn(z(w).P) implies that = ¢ (fn(P) \{w}). Moreover, since
fn(P{y/w}) C (fn(P) \{w}) U{y}, we obtain that = ¢ fn(P{y/w}).

18

2.3. EQUIVALENCE OF REDUCTION AND LTS SEMANTICS

S-Out: we have zy.P =% P, with z # y, z and z ¢ fn(zy.P). The last assertion
implies that x ¢ fn(P).

S-PaR-L: we have P | Q = P' | Q, with x ¢ n(a) and = ¢ fn(P | Q); we obtain
that P = P’ and bn(a) N fn(Q) = 0.

x ¢ fn(P | Q) implies that = ¢ fn(P) and x ¢ fn(Q). Thus, by applying the

inductive hypothesis on the set {P = P’, z ¢ n(a),z ¢ fn(P)} we obtain that
x ¢ fn(P’). Since x ¢ fn(P’) and x ¢ fn(Q), we conclude that = ¢ fn(P" | Q).

S-PAR-R: analogous to the previous case.

S-Com-L: we have P | Q & P' | @', with # ¢ fn(P | Q); we obtain that
P2 P and Q 2% (.
z ¢ fn(P [Q) implies that z ¢ fn(P) and = ¢ fn(Q). According to Lemma

, P 2% P implies that y,2 € fn(P), and since z is not free in P we
conclude that x # y,z. By applying the inductive hypothesis on the sets

(P25 PLotyz ogmP)and{Q 5 Q z#yz z¢mQ)} we
obtain that x ¢ fn(P’) and = ¢ fn(Q’). Hence, we conclude that x ¢ fn(P’" | Q').

S-CoM-R: analogous to the previous case.

S-REs: we have (vz)P = (v2) P, with z ¢ n(a) and x ¢ fn((v2)P); we obtain
that P % P’ and z ¢ n(a).

If x = z, then = cannot occur free in (vx)P’ (in case x occurred free in P’ it
would result being bound in (vx)P’).

If x # z, since fn(P) C fn((vz)P) U {2z} and = ¢ fn((vz)P) U {z}, we obtain
that = ¢ fn(P). Thus, by applying the inductive hypothesis on the set

{P% P xdn(a),r ¢ fn(P)} we obtain that x ¢ fn(P).

Since fn((vz)P’) C fn(P’) we conclude that = ¢ fn((vz)P’).

S-OPEN: we have (vz)P v, P’ with # y,z and x ¢ fn((v2)P); we obtain
that P £ P’ and y # z.

Since fn(P) C fn((vz)P) U {z} and = ¢ fn((vz)P) U {z}, we deduce that

x ¢ fn(P). Thus, by applying the inductive hypothesis on the set

{P B pPlatyz ¢ fn(P)} we obtain that x ¢ fn(P’).

S-CLose-L: we have P | Q & (vz)(P'| Q'), with 2 ¢ fn(P | Q); we obtain
that P 2% P Y24 o and = ¢ fn(Q).

If x = 2, then = cannot occur free in (vz)(P' | Q).

Let then z # 2. x ¢ fn(P | Q) implies x ¢ fn(P) and = ¢ fn(Q). According to

Lemma , Q M @’ implies that y € fn(Q); = does not occur free in @, so
we obtain that x # y. By applying the inductive hypothesis on the sets

{P), P x #vy,z, v ¢ fn(P)} and {Q LIGN Q,x #y,z, v ¢ (Q)} we
obtain that x ¢ fn(P’) and x ¢ fn(Q’). Hence, we infer that x ¢ fn(P' | Q');
finally, since fn((vz)(P' | Q') C fn(P’ | Q'), we conclude that

x & fn((vz)(P' | Q"))

19

2.3. EQUIVALENCE OF REDUCTION AND LTS SEMANTICS

S-CLoOsSE-R: analogous to the previous case.

Lemma 2.5. If P = P', then x € fn(P) < = € fn(P').

Proof. Let P = P'; we proceed by induction on the structure of P = P’.

PAR-UNIT: we have P | 0 = P. The conclusion follows from the fact that
fn(P | 0) = fn(P) U fn(0) = fn(P).

PAar-ComMm: we have P | @ = @ | P. The conclusion follows from the fact
that fn(P | Q) = fn(P) U fn(Q) = fn(Q | P).

Par-Assoc: we have P | (Q | R) = (P | @) | R; analogous to the previous
case.

Sc-ExXT-ZERO: we have (vx)0 = 0. Both processes have no free occurrences
of variables.

Sc-EXT-PAR: we have (v2)P | Q = (vz)(P | Q), with z ¢ fn(Q).

— Let x € fn((v2)P | Q): then either x € fn((r2)P) or z € fn(Q) holds.
In the first case, z € fn(P) and = # z, hence x € fn(P | Q) and then

x € fn((vz)(P | Q)). In the second case, x # z because = occurs freely in
@ and z does not; hence x € fn(P | Q) and then = € fn((vz)(P | Q)).

— Let x € fn((vz)(P | Q)): then z € fn(P | @), hence either x € fn(P) or
z € fin(Q), and = # z. If x € fn(P), then we obtain that z € fn((vz)P),
since z # z. As aresult, in both cases we conclude that x € fn((v2)P | Q).

Sc-Ex1-REs: we have (vy)(vz)P = (vz)(vy)P. The conclusion follows from
the fact that fn((vy)(vz)P) = fn((v2)P)\{y} = fn(P)\{y, 2} =
= fn((vy)P)\{z} = fin((vz)(vy)P).

C-In: we have z(y).P = z(y).Q, given that P = Q.

If x € fn(2(y).P), then either z = z (and we conclude immediately) or z # y
and = € fn(P). In this case, by applying the inductive hypothesis on the
congruence P =) we obtain that = € fn(Q); since x # y, we conclude that
x € fn(2(y).Q). The other implication is analogous.

C-OuTt: we have zy. P = zy.Q), given that P = Q.

If x € fn(Zy.P), then either x = 2, v = y or x € fn(P). In the first two cases
we conclude immediately; in the last case, we apply the inductive hypothesis
and conclude. The other implication is analogous.

C-PAR: we have P | Q = P’ | @, given that P = P'.

Let € fn(P | Q). If x € fn(P), then we apply the inductive hypothesis
and conclude; if = € fn(Q) we conclude immediately. The other implication is
analogous.

20

2.3. EQUIVALENCE OF REDUCTION AND LTS SEMANTICS

e C-REs: we have (v2)P = (v2)Q, given that P = @'

If z € fn((vz)P), then = € fn(P) and x # z; we apply the inductive hypothesis
and conclude. The other implication is analogous.

e C-REF: we have P = P. The proof is immediate.

e C-Sym: we have () = P, given that P = (). By applying the inductive
hypothesis on the congruence P =) we obtain that = € fn(P) < = € fn(Q).

e C-TrANs: we have P = R, given that P = @ and Q) = R.

If x € fn(P), then = € fn(Q) by inductive hypothesis and = € fn(R) by
inductive hypothesis. The other implication is analogous.

]

We state the first of two main lemmas needed for the proof of Theorem 2. The proof
is a long induction on the structure of the congruence P = () given as hypothesis:
we present the most significant steps, leaving the rest of the proof to Appendix [B]

Lemma 2.6. If P = Q and P < P’, then there exists a process Q' such that Q = @'
and P' = (Q)'.

Remark. The proof is carried out by induction over the structure of the congruence
P = P'. It requires assuming that the left-hand side process P makes some transition
and proving that the right-hand side process P’ makes an appropriate transition.
However, when considering the case where this congruence arises from the C-Sym
rule, the roles of the left and right-hand side processes are reversed: the assumption
involves the right-hand side process and the goal involves the left-hand side process.
In such situations, in order to streamline the proof structure and automatically
address the C-SyM case, the two symmetric assertions can be proved concurrently, as
displayed in the following commuting diagrams. In these diagrams, solid arrows and
symbols denote universal quantification, while dashed arrows and symbols denote
existential quantification.

P =0 =
Ja o va JO‘
pPo= Q) po=

Figure 2.6: Graphical representation of Lemma [2.6| statement.

Proof. Let P = (). As explained in the remark above, we proceed by induction on
the structure of P = @Q; for each case, we first assume P < P’, aiming to obtain
a transition of the process @, and then we assume @ — (', aiming to obtain a
transition of P.

e Par-Assoc: we have P | (Q | R) = (P | Q) | R.

Let P | (Q | R) = S, denoted as (T1). We perform inversion on this transition,
obtaining the following subcases:

21

2.3. EQUIVALENCE OF REDUCTION AND LTS SEMANTICS

— S-Par-R: (T1) can be rewritten as P | (Q | R) = P | S, and we have
that (Q | R) = S” and bn(a) N fn(P) = (). We perform inversion on the
transition (Q | R) = S’, obtaining different subcases.

* S-CLosE-L : (T1) is rewritten as P | (Q | R) = P | ((v2)(Q' | R')),
and we have that z ¢ fn(R), @), Q' and R iGNy
Applying Lemma Q iON @’ implies that z € bn(Q); for the
variable convention, we can assume that z is not free in P. Hence,
we can apply a S-PAR-R rule, obtaining P | @ B, p | Q'
Then, since z is not free in R, we can apply a S-CLOSE-L rule, ob-
taining (P | Q) | R 5 (v2)(P| Q) |).
Finally, we show that P | ((v2)(Q' | R')) = (v2)(P | @) | R)
through the following congruences:

PACON BT @ 7)) = @ ()P Y

Sc-ExXT-PAR

(w2)(Q | R)) [P = (v2)((Q| R)) | P)

PAR MoONOID AXIOMS

(QIR)|P=(PIQ)|FR

RS QTR P) = (P) ') Y
C-TRANS (1) (¢2)
(©1) (©3)
C-TRANS

PI((w2)(Q | R)) = (v2)(P| Q) | R

e Sc-EXT-PAR: we have (vx)P | Q = (vz)(P | Q), with z ¢ fn(Q).

First, let (vz)P | Q < R, denoted as (T1). We perform inversion on this
transition, obtaining the following subcases.

— S-PAR-R : (T1) can be rewritten as (vz)P | Q@ % (vo)P | @', and we
have that Q < @' and bn(a) N fn((vz)P) = 0.
For the variable convention we can assume that the bound name x does
not occur free or bound in the action a: thus we have both the conditions
x ¢ bn(a) and = ¢ n(«).
Since fn(P) C fn((vz)P) U {z}, bn(a) N fn((vz)P) = () and = ¢ bn(a),
we have that bn(a) N fn(P) = 0. Thus, we can apply a S-PaRr-R rule,
obtaining that P | @ < P | Q'. Then, since 2 ¢ n(a), we can apply a
S-REs rule, obtaining that (vz)(P | Q) = (vz)(P | Q).
Finally, since Q = Q', z ¢ fn(Q) and = ¢ n(a), through Lemma
we obtain that = ¢ fn(Q'); hence, we conclude by observing that the
process (vz)(P | Q') is congruent to the process (vz)P | @' through a
Sc-EXT-PAR rule.

22

2.3. EQUIVALENCE OF REDUCTION AND LTS SEMANTICS

Conversely, let (vz)(P | Q) = R, denoted as (T2). By inversion on this
transition we obtain two subcases:

— S-REs: we have that 2 ¢ n(a) and P | Q = S. We perform inversion on
this transition, obtaining the following subcases.

* S-CoM-L : (T2) can be rewritten as (vx)(P | Q) > (va)(P' | Q'),
and we have that P =% P’ and Q ENyeY

Since @ ﬂ @', by applying Lemma we deduce that z € fn(Q);
however, by hypothesis « ¢ fn(Q), thus we conclude that = # z. We
have two cases, depending on whether z = w or x # w.

If + # w, we can apply the S-REs rule to obtain the transition
(vo)P =% (vx)P'. Then, through a S-Com-L we obtain that

(v2)P | Q5 (vz)P' | Q. Since Q), Q' z ¢ n(Q) and z # z,w,
through Lemma we deduce that x ¢ fn(Q’); finally, through a
Sc-EXT-PAR rule we obtain that the process (vx)P’ | Q' is congruent
to the process (vz)(P' | Q).
If + = w, we can apply the S-OpPEN rule to obtain the transition
(vx)P 2@, pr, Then, through a S-CLOSE-L we get that
(vr)P | Q 5 (vx)(P'| Q'), hence reaching our goal.

* S-CrLosE-L : (T2) is rewritten as (vz)(P | Q) = (vz)((vw)(P' | Q")),

and we have that P 2" P, Q N Q' and w ¢ fn(Q).

Since @), @', by applying Lemma we have that z € fn(Q);
however, by hypothesis x ¢ fn(Q), thus we conclude that x # z. On

the other hand, since P M) P’ by applying Lemma we have
that w € bn(P); this implies that either a restriction (rvw) or an
input prefix y(w) occurs in P, binding w in P. Considering that the
restriction (vz) in the process (vz)(P | @) is outermost, we derive
that the occurrences of the restriction (vz) and the construct which
binds w in P are distinct; hence, up to a-renaming, we can assume
that x # w. For this reason we can apply the S-REs rule to obtain
the transition (vz)P), (vz)P'. Finally, through a S-CLOSE-L we
get that (v2)P | Q = (vw)((vx)P' | Q).

Since @ KSON Q', x ¢ fn(Q) and = # z,w, through Lemma we
have that = ¢ fn(Q’); thus, through a Sc-EXT-PAR rule we obtain
that (vx)P’ | Q' is congruent to (vx)(P' |). Through a C-REs rule
we obtain that (vw)((vx)P’ | Q') is congruent to (vw)((vz)(P' | Q'));
the latter process is congruent to (vz)((vw)(P' | Q')) via Sc-EXT-
REs, hence achieving our goal.

— S-OPEN : (T2) can be rewritten as (vz)(P | Q) 2@, R, and we have
that z # 2 and (P | Q) =5 R. We perform inversion on this transition
through the S-Par-L rule, as the S-PAR-R would lead to a contradiction:
namely, we would obtain that () N @', thus by applying Lemma we
would deduce {z,z} C fn(Q), which is absurd due to the hypothesis

23

2.3. EQUIVALENCE OF REDUCTION AND LTS SEMANTICS

x ¢ fn(Q). Hence, (T1) can be rewritten as (vx)(P | Q) Ny 2 | @, and
we have that P = P'.
Through S-OPEN we obtain that (vz)P 2@, P’; since = ¢ fn(Q) we can

apply the S-PARr-L rule and obtain that (vz)P | @ 29 pr | @, hence
achieving our goal.

e C-PAR : we have P | Q = P’ | Q, given that P = P,

First, let P | Q = R, denoted as (T1). We perform inversion on this transition,
obtaining the following subcases.

— S-PAR-R: (T1) can be rewritten as P | Q < P | ', and we have Q = Q'
and bn(a) N fn(P) = 0.
Since P = P’ and x € fn(P), by applying Lemma we deduce that
x € fn(P’"). As a consequence, since bn(a) N fn(P) = 0, we have that
bn(a) N fn(P") = (. Thus, we can apply the S-PAR-R rule and obtain
that P’ | Q = P’ | @. The process P | Q' is congruent to the process
P’ | @' through C-PARr, hence achieving our goal.

We state and prove the last lemma needed for the proof of Theorem 2.

Lemma 2.7. If P — @Q then there exist three names x,y and z, a finite (possibly
empty) set of names wy, ..., w, and three processes Ry, Ry and S such that

P = (vwy)...(vw,)((Zy.Ry | x(2).R2) | S) and

Q= (vwy)...(vwa)((By | Ro{y/2}) | 5).

Proof. Let P — Q; we proceed by induction on the structure of this reduction.

e R-CoMm: we have zy.Ry | z(2).Re — Ry | Ro{y/z}.

With an empty set of names and setting S := 0, we obtain through PAR-UNIT
that P = (zy.Ry | x(2).Rs) | S and Q = (R | Re{y/z}) | S, thus reaching the

conclusion.

e R-Par: we have P| R — @ | R, given that P — Q.

By applying the inductive hypothesis on the reduction P — () we obtain that
there exist names z,y, z, wy, ..., w, and processes Ry, Ry, S such that

P = @w)((@y.Ry | 2(2).R) | S) and Q = (70)((Ry | Rofy/=}) |), with
(vw) = (vwy)...(vwy).

Through C-PaR we obtain that P | R = ((vw)((Zy.Ry | (2).R2) | 9)) | R
and Q | R = ((vw)((B1 | Ro{y/2}) | 9) | 1.

We can assume that, up to a-renaming, the names wi, ..., w, do not occur
free in R: so, by applying the Sc-ExT-PAR rule n times, we obtain that
(70)(@y.Ry | 2(2).Ro) |) | R = 0)((3y.Ry | 2(2).R) | S) | R)
and ((vw)(Ry | Rofy/2}) | 9)) | R = (0)(Ry | Rafy/2}) | 9) | R).

24

2.3. EQUIVALENCE OF REDUCTION AND LTS SEMANTICS

Thanks to a combination of monoid axioms for parallel composition, followed
by n applications of the C-REs rule, we obtain the following congruences:

(rw)(((zy-By | 2(2)-R2) | 5) | R) = (vw)((Ty-By [2(2).Be) | (S| R));
(vw)(((By [Ro{y/2}) |) | R) = (vw)((By | Ro{y/2}) | (S| R)).

Finally, by applying the C-TRrANS rule twice we obtain that the processes P | R
and @ | R are equivalent to the desired processes.

e R-REs: we have (vv)P — (vv)@Q, given that P — Q.

By applying the inductive hypothesis on the reduction P —) we obtain that
there exist names x,vy, z, wy, ..., w, and processes Ry, Ry, S such that
P = (vw)((Zy.Ry | x(2).Rs) | S) and Q = (vw)((Ry | Ro{y/z}) | S). Through
a C-REs rule we obtain that (vv)P = (vv)(vw)((Zy.Ry | z(2).Rs) | S) and
(rv)Q = (vv)(vw)((Ry | R2{y/z}) | S), thus reaching the conclusion.

e R-STRUCT: we have P — @), given that P — @', P = P’ and Q' = Q.

By applying the inductive hypothesis on the reduction P’ —)’ we obtain that
there exist names z,y, z, wy, ..., w, and processes R, Ry, S such that

P = (vw)((zy. Ry | 2(2).Ry) | §) and Q" = (vw)((Ry | Rofy/2}) | 5).
By transitivity, P = P’ and P’ = (vw)((Zy.R; | z(2).Ry) | S) imply that
P = (vw)((zy.Ry | x(2).Ry) | S). Since @' = @ implies Q = @', we proceed
analogously for .

O
Finally, we prove Theorem 2. We recall its statement:
Theorem 2. P — Q implies the existence of a Q' such that P = Q' and Q = Q.

Proof. Let P — Q.

By applying Lemma [2.7] there exist names z,y, z, wy, ..., w, and processes Ry, Ry, S
such that P = P” and Q = Q", with P” := (vwy)...(vw,)((Zy.Ry | z(2).R2) | S)
and Q" := (vwy)...(vw,)((Ry | Ro{y/z}) | 9).

By applying a S-Cowm-L rule, followed by a S-PAR-L rule and n S-REs rules, we
obtain that P” 5 Q": thus, by applying Lemmaon theset {P" =P, P" 5 Q"}
we obtain that there exists a process @’ such that P = @’ and Q" = Q. Through
a C-TRANS rule we obtain that (Q = @', hence the conclusion. O

The following diagram illustrates the congruences and transitions used in the proof.

P P = P
J = J{T ET
Q Q = Q = Q

Figure 2.7: Graphical representation of Theorem [proof.

25

Chapter 3

Beluga Formalization

Beluga ([19], [20], [21], [22]) is a functional programming language and proof en-
vironment developed by the Complogic group at McGill University in Montreal,
Canada, under the leadership of Professor Brigitte Pientka. It offers a two-level
infrastructure to formalize and reason about deductive systems. The data level de-
ploys the logical framework LF [8], which enables the definition of type families to
represent data of the object language. The computation level supports contexts and
contextual objects, which are employed to reason about LF type families and prove
properties about them.

Beluga implements higher-order abstract syntax [18], a technique which allows
the representation of binding constructs from the object language through binders
of the meta-language. This approach effectively exempts the user from having to
handle substitutions and renamings directly. Proofs are represented by recursive
programs, according to the Curry-Howard isomorphism [11]; in order to ensure the
correctness of proofs, Beluga includes a totality checker, which verifies that all cases
are covered and recursive calls are made on structurally smaller arguments. More-
over, Beluga supports the use of computation holes [14] to represent subgoals in
the proof terms; it interactively assists the user by inferring the type of computa-
tion holes and by attempting to automatically split variables for case analysis upon
request.

The current chapter outlines the Beluga formalization of the definitions and
proofs introduced in Chapter [2 Following the structure of the informal presentation,
the first sections focus on the encoding of the syntax and semantics of the m-calculus;
this includes a gradual explanation of the Beluga constructs and features used. It
is important to recall that the Beluga encoding will employ the late LTS semantics,
instead of the early semantics previously adopted. The following sections detail the
key steps involving the formalization of the theorems about semantics equivalence;
we also discuss the challenges encountered during the encoding process and the
corresponding solutions devised.

3.1 Syntax

To begin with, we define the sets of names and processes. In Beluga, data of the
object language are introduced by declaring new types in the logical framework LF
[8] along with their constructors [22].

The set of names is a countably infinite set without any other inherent property

26

3.1. SYNTAX

or constraint. The following declaration defines an LF type names which does not
contain any predefined constant or have any constructor:

LF names: type =
The type names can be thought of as initially empty, with the possibility of having
any number of distinct names added at need.

The next declaration defines an LF type proc along with its constructors p_zero,
p_in, p_out, p_par and p_res:

LF proc: type =
| p_zero: proc
| p_in: names — (names — proc) — proc
| p_out: names — names — proc — proc
| p_par: proc — proc — proc
| p_res: (names — proc) — proc

Figure 3.1: Encoding of the set of processes.

The constructor p_zero is a constant of type proc and represents the process O.
The constructor p_out defines an expression of type proc which takes two terms
of type names and a term of type proc as arguments: for example the expression
p_out X Y P, where X and Y have type names and P has type proc, is itself a term of
type proc representing the output prefix zy.P. Similarly, the constructor p_par takes
two terms of type proc as arguments and represents parallel composition P | Q.
The constructor p_in takes a term of type names and a term of type (names — proc)
as arguments, with the latter being the type of higher-order functions from names
to proc; higher-order functions can be explicitly described in Beluga by the syntax
\x. (F x), where x is the argument of the function and F is the body of the function.
Thus, the input prefix z(y).P is represented by the expression p_in X P, where P
is a variable of the functional type (names — proc). By employing higher-order
abstract syntax [18], we are able to represent the object-level binder y through a
meta-language binder, namely the implicit argument of the function P; one of the
key benefits of this technique is that the meta-language automatically implements a-
renaming for binders and capture-avoiding substitutions [20]. As a consequence, the
variable conventions presented in section [2.1.1] are achieved without being explicitly
expressed by the user; this also holds for the side conditions for semantics rules and
for most of the lemmas about free and bound variables in processes, as it will be
discussed in the next sections.

In the same way, the constructor p_res takes a higher-order function P from names to
proc as an argument, and represents the restriction (vx)P by the expression p_res P.
The last line following the LF type proc declaration makes the p_par constructor
infix.

Given a language encoding, it is important to show fidelity of the representation
to the original model. This is achieved by estabilishing the adequacy of the repre-
sentation, i.e. proving that there is a correspondence, which preserves composition,
between the informal definitions of syntax and semantics and the relative types and
judgements encoding them. In our context, adequacy of syntax consists in building

27

3.2. SEMANTICS

an encoding function between the set of a-equivalence classes of processes in Proc
and the elements of type proc and proving that it is a compositional bijection. For-
mal definition and proof of adequacy is beyond the scope of this thesis, but we refer
to Honsell et al. [10] for further details. Based on this result, in the following sections
we will often make no distinction between names or processes of the m-calculus and
their representation in Beluga.

3.2 Semantics

In this section we present the Beluga encoding for the two different operational
semantics. In alignment with the structure outlined in Section [2.2] we first introduce
the encodings of structural congruence and reduction for the reduction semantics,
and then introduce the encodings of actions and transition relation for the LTS
semantics.

3.2.1 Reduction Semantics
Structural Congruence

In Beluga, predicates are encoded by LF type families, as clarified later. The con-
gruence relation is defined through the following declaration:

LF cong: proc — proc — type =
% Abelian Monoid Laws for Parallel Composition
| par_assoc: cong (P p_par (Q p_par R)) ((P p_par Q) p_par R)
| par_unit: cong (P p_par p_zero) P
| par_comm: cong (P p_par Q) (Q p_par P)
% Scope Extension Laws
| sc_ext_zero: cong (p_res (\x.p_zero)) p_zero
| sc_ext_par: cong ((p_res P) p_par Q) (p_res (\x.((P x) p_par Q)))
| sc_ext_res: cong (p_res \x.(p_res \y.(P x y))) (p_res \y.(p_res \x.
P xy))
% Compatibility Laws
| c_in: ({y:names} cong (P y) (Q y)) — cong (p_in X P) (p_in X Q)
| c_out: cong P Q — cong (p_out X Y P) (p_out X Y Q)
| c_par: cong P P’ — cong (P p_par Q) (P’ p_par Q)
| c_res: ({x:names} cong (P x) (Q x)) — cong (p_res P) (p_res Q)
% Equivalence Relation Laws
| c_ref: cong P P
| c_sym: cong P Q — cong Q P
| c_trans: cong P Q — cong Q R — cong P R

Figure 3.2: Encoding of the congruence relation.

The LF type cong is indexed by two terms of type proc: it means that P =) holds
if and only if the type cong P Q is inhabited. Some constructors, such as par_comm,
do not have any explicit premise and directly assert some congruence; for example,
par_comm does not take any argument, aside from the two implicit processes P and

28

3.2. SEMANTICS

@, and denotes the congruence P | @ = @ | P. Other constructors, such as c_trans,
take some expressions as explicit arguments; these expressions represent premises
of the corresponding inference rule. For example, c_trans C1 C2 represents the
congruence P = R, provided that C1 is an expression of type cong P Q and C2 is an
expression of type cong Q R.

The tokens {y:names} appearing in the c_in rule denote universal quantification:

therefore, we assume as a premise that for all y in names, cong (P y) (Q y) holds.
In this way we are stating that P and Q, which can be thought of as processes de-
pending on a certain argument, are congruent regardless of the specific choice of the
argument’s name. The same holds for the c_res rule.
We also observe that, in the encoding of the Sc-ExT-PAR rule, the process (vz)P | @
is represented as (p_res P) p_par Q; the binder x of the left component is repre-
sented by the binder of the function P, which is automatically selected to be distinct
from any free name occurring in Q. In this way, the side condition z ¢ fn(Q) is met
without the need for explicit declaration.

Reduction

The reduction relation is encoded by the LF type family red defined through the
following declaration:

LF red: proc — proc — type =
| r_com: red ((p_out X Y P) p_par (p_in X Q)) (P p_par (Q Y))
| r_par: red P Q — red (P p_par R) (Q p_par R)
| r_res: ({x:names} red (P x) (Q x)) — red (p_res P) (p_res Q)
| r_str: P cong P’ — red P’ Q° — Q’> cong Q — red P Q

Figure 3.3: Encoding of the reduction relation.

The encoding of the four reduction rules is straightforward. We observe that in the
rule R-Cowm, expressed by the homonymous constructor, substitution of the name y
into the process) is performed by applying the meta-function Q to the name Y in
the result process P p_par (Q Y).

Adequacy of reduction semantics consists in proving that, given two processes
P, (@), there exist a compositional bijection mapping P = () in P cong Q and a com-
positional bijection mapping P — () in P red Q. Similarly to the previous section,
we refrain from presenting a formal definition of adequacy.

3.2.2 Labelled Transition System Semantics

We follow Honsell et al. [10] for the encoding of late LTS semantics in a HOAS
environment. We declare two different types for bound and free actions, defining
bound actions as those containing a bound name and free actions as those which
do not; then, we declare two different relations for transitions via free and bound
actions. The result of a free transition is a process, while the result of a bound tran-
sition is a function from names to processes: instead of explicitly stating the bound
name involved in the transition, that name is the argument of the aforementioned
function.

29

3.2. SEMANTICS

Actions

We define the two types f_act and b_act which represent free and bound actions:

LF f_act: type = LF b_act: type =
| f_tau: f_act | b_in: names — b_act
| f_out: names — names — f_act | b_out: names — b_act

b I

Figure 3.4: Encoding of the set of actions.

Since the name y in the input action x(y) is considered to be bound in the late se-
mantics, the input action is encoded as a bound action of type b_act. The f_out con-
structor takes two arguments, representing the free output action zy as f_out X Y.
Conversely, the b_in and the b_out constructors take one argument, representing
the input action z(y) and the free output action Z(y) as b_in X and b_out X re-
spectively. As previously explained, the bound name y is not explicitly instantiated
in the action definition, but rather represented by the argument of a function from
name to processes which constitutes the result of a bound transition.

Transition relation

We define the two type families fstep and bstep which represent free and bound
transitions:

LF fstep: proc — f_act — proc — type =
| fs_out: fstep (p_out X Y P) (f_out X Y) P
| fs_parl: fstep P A P’ — fstep (P p_par Q) A (P’ p_par Q)
| fs_par2: fstep Q A Q° — fstep (P p_par Q) A (P p_par Q’)
| fs_coml: fstep P (f_out X Y) P’ — bstep Q (b_in X) Q’
— fstep (P p_par Q) f_tau (P’ p_par (Q’ Y))
| fs_com2: bstep P (b_in X) P’ — fstep Q (f_out X Y) @’
— fstep (P p_par Q) f_tau ((P’ Y) p_par Q’)
| fs_res: ({z:names} fstep (P z) A (P’ 2z))
— fstep (p_res P) A (p_res P’)
| fs_closel: bstep P (b_out X) P’ — bstep Q (b_in X) @’
— fstep (P p_par Q) f_tau (p_res \z.((P’ z) p_par (Q’ z)))
| fs_close2: bstep P (b_in X) P’ — bstep Q (b_out X) Q’
— fstep (P p_par Q) f_tau (p_res \z.((P’ z) p_par (Q’ z)))

and bstep: proc — b_act — (names — proc) — type =
bs_in: bstep (p_in X P) (b_in X) P
bs_parl: bstep P A P’ — bstep (P p_par Q) A \x.((P’ x) p_par Q)
bs_par2: bstep Q A Q° — bstep (P p_par Q) A \x.(P p_par (Q’ x))
bs_res: ({z:names} bstep (P z) A (P’ z))
— bstep (p_res P) A \x.(p_res \z.(P’ z x))
| bs_open: ({z:names} fstep (P z) (f_out X z) (P’ z))
— bstep (p_res P) (b_out X) P’

Figure 3.5: Encoding of the transition relation.

30

3.3. EQUIVALENCE OF REDUCTION AND LTS SEMANTICS

The type fstep is indexed by the initial process, a free action and the resulting
process. Conversely, the type bstep is indexed by the initial process, a bound action
and a function from names to processes representing the resulting process. These
two types are defined by mutual induction, as some of the fstep constructors take
transitions of type bstep as arguments, and vice versa; in Beluga, mutual induction
is achieved using the keyword and between the two definitions. Each of the S-REs
and S-PAR rules is duplicated, as they involve a generic action a which can be either
free or bound. As in the R-CoM rule encoding for the reduction relation, substitution
of the input name in the S-Cowm rules is performed through a function application.
Additionally, it is worth noting that side conditions of the transition rules do not
need to be explicitly stated in the Beluga encoding. For instance, the S-REs rule
describes the transition (vz)P % (vz)P’, with P % P’ and x ¢ n(a); the £s_res rule
encodes the resulting transition as f_step (p_res \x.(P x)) A (p_res \x.(P’ x)),
where the binder z is represented by the argument x of the functions P and P’,
automatically chosen to be different from the names occurring in the action A.
Adequacy of the LTS semantics encoding consists in demonstrating that each
transition corresponds to a canonical free or bound transition of type f_act or
b_act, and vice versa. The definition and proof of transition adequacy are typically
less straightforward than syntax adequacy. Further details can be found in [10].

3.3 Equivalence of Reduction and LTS Semantics

In order to understand how proofs are constructed in Beluga and how the system
supports the user in the proof search, we begin with an illustrative example. For this
purpose, we modify the congruence relation defined in section by replacing the
C-REF rule (P = P) with the weaker C-REF-ZERO rule, which asserts that 0 = 0;
with this modified congruence relation, we aim to prove that the C-REF rule is
admissable. First, we informally state and prove the example theorem.

Example. VP € Proc, P = P holds.
Proof. Let P € Proc. We proceed by induction on the structure of the process P.
e P = 0: the congruence 0 = 0 holds for the C-REF-ZERO rule.

e P = Zy.QQ: by applying the inductive hypothesis on the process (), we obtain
that @ = Q. Through a C-OuT rule we obtain that zy.QQ = zy.Q), hence
reaching the conclusion.

e P = 1x(y).Q: by applying the inductive hypothesis on the process (), we obtain
that @ = @. Through a C-IN rule we obtain that z(y).Q = z(y).Q, hence
reaching the conclusion.

e P = (@ | Q by applying the inductive hypothesis on the process @, we
obtain that 1 = 1. Through a C-PaR rule we obtain that Q1 | Q2 = Q1 | Q2,
hence reaching the conclusion.

e P = (vz)Q: by applying the inductive hypothesis on the process @), we obtain
that @ = Q. Through a C-REs rule we obtain that (vx).QQ = (vz).Q, hence
reaching the conclusion.

[]

31

3.3. EQUIVALENCE OF REDUCTION AND LTS SEMANTICS

In Beluga, proofs are encoded by total recursive functions [22], following the Curry-
Howard isomorphism [11]. Introducing an hypothesis corresponds to declaring a
new variable of the appropriate type. Induction and case analysis on the structure
of an object correspond to pattern matching on the corresponding variable. Appli-
cation of the inductive hypothesis corresponds to recursive call of the function on a
structurally smaller object.

The arguments and result of recursive functions representing theorems are not LF
objects or types; instead, they are contextual objects and types, which are defined at
the computation level. The context of an LF term is made of the typing assumptions
of the variables occurring free in that term; an object containing free variables is
referred to as an open object, while a closed object is one without free variables.
A contextual object [g F M] consists of an LF object M along with its context g,
separated by the turnstile symbol “”; as the context g provides bindings for the
free variables of the term M, the square brackets enclosing the contextual object
denote that it is closed. On the other hand, a contextual type [g + A] consists of
an LF type A paired with a context g; we can say that a LF object M has contextual
type [g - Al in case M:A holds in the context g [19).

In the example proof, we implicitly handle open processes: specifically, in the
input and restriction cases, we apply the inductive hypothesis to a process) which
contains a free variable (y in the first case, = in the second case). Consequently,
in the Beluga encoding of the proof we need to deal with contextual processes and
prove the result for any appropriate context. This requires a way to define contexts
of a specific form and quantify over them, thus leading to the following declaration:

schema ctx = names;

This declaration ensures that the kind of context we are working with consists solely
of assumptions of the form “x:names”. In Beluga, the keyword schema categorizes
contexts based on their structure; just like terms have their own type, contexts of
the form x:names are classified under the schema ctx.

The following line replaces the c_ref constructor in the cong type declaration:

| c_ref_zero: cong p_zero p_zero
Finally, we are ready to state the example theorem.
rec refl_of_cong: (g:ctx) {P:[g I procl} [g - P cong P] =
?
This declaration introduces a recursive function, denoted as refl_of_cong, through
the rec keyword. This function takes as input any context g of schema ctx (passed as
an implicit argument, due to the round brackets) and any process P whose context
is g; it returns a contextual object of type [g F P cong P], which represents a
derivation of the congruence P = P within the context g. The question mark is a
computation hole [14] which indicates a subgoal of the proof which remains to be
solved; technically, the hole serves as a placeholder for an appropriate computation
level object. During the proof search, Beluga can print the typing assumptions of
all objects defined thus far, along with the expected type of the hole. This feature
aids the user in completing the proof; additionally, interactive mode allows Beluga
to automatically fill some of these holes [21].

The next step involves assuming the hypotheses of the theorem.

32

3.3. EQUIVALENCE OF REDUCTION AND LTS SEMANTICS

rec refl_of_cong: (g:ctx) {P:[g F procl} [g F P cong P] =

mlam P = 7

The mlam keyword is used to introduce an explicit universal quantifier; in this ex-

ample, we introduced a variable P of type [g - proc] for some context g. Since the

context is an implicit argument, it does not need to be introduced through the mlam

keyword; instead, it is inferred from the declaration of the contextual process P.
Next, induction on the structure of the process P is performed through pattern

matching on the variable P. In Beluga, this is executed through the case .. of

syntax, with a vertical line introducing each case.

rec refl_of_cong: (g:ctx) {P:[g I procl} [g - P cong P] =
mlam P = case [_ F P] of

| [g F p_zero]l = 7

| [ghF poout X YQ] = 7

| [gF p_in X \y.Q[..,y]] = 7

| g+ Q1 p_par Q2] = 7

| [gF p_res \x.Q[..,x]] = 7
In Beluga, the underscore replaces variables which can be reconstructed by the
system. In the term [_ F P], the underscore stands for the context variable, which
was not explicitly introduced and therefore does not have a specific name. However,
when we introduce each case, we have the freedom to assign names to each variable
involved, allowing us to rename the context variable as g. We observe that, in the
input and restriction cases, meta-functions from names to proc have been defined
through their n-expansion; the body of each function, such as Q[..,y] in the input
case, is a contextual process whose free variables are included in the weaker context
(g,y:names). More precisely, the square brackets [..,y] denote the substitution of
the free variables present in Q into the variables of the current context; suspension
dots indicate identity substitution. Although explicitly stating context variable
substitution is not always necessary (for example, it is not necessary in this proof),
we have chosen to include square brackets in all situations in order to always display
variable dependencies in a clear way.

Finally, we prove the result for each case.

— In the p_zero case, the goal is a contextual object of type
[g - p_zero cong p_zero]; this is provided by the object [g - c_ref_zero].

— In the p_out case, we need to exhibit a contextual object of type [g + (p_out X
Y Q cong (p_out X Y Q)]. In the informal proof, the inductive hypothesis
is applied to the process ; this is performed in Beluga through the recur-
sive call of the function refl_of_cong on the contextual process [g + Q1. The
let ..=.. in syntax allows to compute the recursive call and store the out-
come in a new contextual object. Hence, by executing the instruction let
[g - C] = refl_of_cong [g - Q] we obtain the result [g - C], where C is a
term of type (Q cong Q). Finally, the object [g - c_out C] is a derivation of
the desired congruence.

— In the p_in case, the goal is to present a contextual object of type [g + (p_in X
\y-Q[..,y]) cong (p_in X \y.Q[..,y1)]. The informal proof still requires

33

3.3. EQUIVALENCE OF REDUCTION AND LTS SEMANTICS

to apply the inductive hypothesis to the process (); however, in this case,
the process Q is defined within the context (g,y:names). Thus, we perform
the recursive call of the function refl_of_cong on the contextual process
[g,y:names Q[..,y]], obtaining an object [g,y:names C[..,y]] contain-
ing a parametric derivation of the congruence Q[..,y] cong Q[..,y]. Finally,
the object [g + c_in \y.C[..,yl] is a derivation of the desired congruence.

The p_par and p_res cases are analogous to the previous ones. We provide the
complete proof of the example theorem:

rec refl_of_cong: (g:ctx) {P:[g - procl} [g + P cong P] =
/ total p (refl_of_cong g p) /
mlam P = case [_ F P] of
| [g F p_zero] = [g - c_ref_zero]
| [g - p_out XY Q] = let [ghF C] = refl_of_cong [g F Q] in
[g - c_out C]
| [gF p_in X \y.Q[..,y]] = let [g,y:names F C[..,y]] =
refl_of_cong [g,y:names F Q[..,y]] in [g F c_in \y.C[..,y]]
| [g F Q1 p_par Q2] = let [g F C1] = refl_of_cong [g - Q1] in
[g - c_par C1]
| [g F p_res \x.Q[..,x]] = let [g,x:names ~ C[..,x]] =
refl_of_cong [g,x:names + Q[..,x]] in [g F c_res \x.C[..,x]]

Figure 3.6: Proof of the example theorem.

The second line specifies that the refl_of_cong function takes two arguments g and p
(where the latter represents the process P: [g = proc]), it is decreasing on the second
argument p and it is total, meaning it is defined on all inputs and always terminates.
In order to streamline the notation, underscores can replace arguments which are
not decreasing. This annotation enables the Beluga totality checker to confirm that
each case has been covered and that each recursive call is structurally decreasing on
the specified argument. Such line is necessary to ensure that a recursive function
represents a proof.

3.3.1 Theorem 1: 7-Transition Implies Reduction

Before presenting the formalization of the preliminary lemmas for Theorem 1, we
need to make a remark. We recall that the Beluga formalization implements the
late LTS semantics, while the informal description of the lemmas in the benchmark
follows the early approach. Since Lemma [1.1| concerns input transitions, which are
interpreted differently depending on the semantics approach, its statement requires
a slight adjustment. We present its modified statement for the late semantics:

Lemma [1.1I]. Rewriting of processes involved in input transitions

IfQ), Q' then there exist a finite (possibly empty) set of names wy, ..., w,
(with x,y # w; Vi = 1,...,n) and two processes R, S such that

Q = (vwy)...(vwy)(xz(y).R|S) and @Q = (vwy)...(vw,)(R|S5).

The conclusion of this lemma includes an existential quantification; however,
Beluga lacks built-in keywords or syntax to formally express this construct. A

34

3.3. EQUIVALENCE OF REDUCTION AND LTS SEMANTICS

typical solution to this problem involves defining a new type family which encodes
the existential quantification. This allows proving the lemma by constructing a
derivation of an object of such type.
Another issue consists in encoding telescopes [3], i.e. the sequences of an indefinite
amount of binders (vw;)...(vw,) restricting the parallel compositions (z(y).R | S)
and (R | S) occurring in the two processes congruent to () and ’. This issue is
resolved by treating telescopes inductively. In the base case,) and)" are congruent
to processes without restrictions; in the inductive case, they are congruent to single
restrictions (vw)P and (vw)P’, where P and P’ inductively have the desired form.
We define the type family ex_inp_rew which encodes the existence of names and
processes as in the statement of Lemma 1.1

LF ex_inp_rew: proc — names — (names — proc) — type =
| inp_base: Q cong ((p_in X R) p_par S)
— ({y:names} (Q’ y) cong ((R y) p_par S)) — ex_inp_rew Q X Q’
| inp_ind: Q cong (p_res P) — ({y:names} (Q’ y) cong (p_res (P’ y)))
— ({w:names} ex_inp_rew (P w) X \y.(P’ y w)) — ex_inp_rew Q X Q’

3

The type ex_inp_rew is indexed by a process, a name, and a process abstraction (i.e.
a function from names to processes). These three arguments represent the elements
which compose an input transition (recall that the result of a bound transition
is actually a process abstraction). The first constructor inp_base estabilishes the
following fact: if @ cong ((p_in X R) p_par S) holds for some process S and process
abstraction R, and if (Q’ y) cong ((R y) p_par S) holds for every name y, then
ex_inp_rew Q X Q’ holds. We observe that the universal quantification in the second
premise is necessary. From a syntactical perspective, indeed, both Q’ and R are
process abstractions; therefore, they must be applied to some name in order to obtain
processes that can occur in a congruence. From a semantical perspective, Q° and R
represent processes with a placeholder for some input name to be further received;
thus, the congruence involving these two processes must hold for any input name
substitution. The second constructor inp_ind states that, if) and @' are congruent
to restrictions (vw)P and (vw)P’ respectively and ex_inp_rew P X P’ (with a minor

abuse of notation) holds for any choice of binder name w, then ex_inp_rew Q X Q’
holds.

Lemma [1.1f: bs_in_rew
We present the proof of Lemma [I.1] in Figure [3.7]

Proof Verbalization: The recursive function bs_in_rew takes as arguments any con-
text g of schema ctx, any process Q in the context g and an object of type [g F bstep
Q (b_in X) \y.Q’[..,yl]; consequently, the function implicitly takes the arguments
X and Q’ as well. It returns an object of type [g + ex_inp_rew Q X \y.Q’[..,y]]
and it is decreasing on the second argument Q.

We introduce a variable Q, representing the universally quantified process, and a vari-
able b denoting the explicit hypothesis [g F bstep Q (b_in X) \y.Q’[..,yl]l. As
the latter is not explicitly universally quantified, the variable b is introduced using
the fn keyword. Next, we implement case analysis on Q through pattern matching,
obtaining five cases.

35

3.3. EQUIVALENCE OF REDUCTION AND LTS SEMANTICS

rec bs_in_rew: (g:ctx) {Q:[g F procl} [g F bstep Q (b_in X) \y.Q’[..,yl]
— [g F ex_inp_rew Q X \y.Q’[..,y]] =

/ total q (bs_in_rew _ q _ _ _) /

mlam Q = fn b = case [_ F Q] of

[g F p_zero] = impossible b
[g - p_in W \z.P[..,z]] = let [gF bs_in] = b in
[g - inp_base (c_sym par_unit) \y.(c_sym par_unit)]
[g - p_out W Z P] = impossible b
[g - Q1 p_par Q2] =
(case b of
| [g - bs_parl Bi] =
let [g - D1] = bs_in_rew [g F Q1] [g F B1] in
let [g F D2] = bs_in_rew_parl [g - Q2] [g - D1] in [g F D2]
| [g + bs_par2 B2] =
let [g - D1] = bs_in_rew [g F Q2] [g - B2] in
let [g F D2] = bs_in_rew_par2 [g F Q1] [g + D1] in [g F D2]

)

[g F p_res \z.P[..,z]] = let [g F bs_res \z.B[..,z]] = Db in
let [g,z:names - D1[..,z]] = bs_in_rew [g,z:names F P[..,z]]
[g,z:names F B[..,z]] in
let [g F D2] = bs_in_rew_res [g,z:names + D1[..,z]] in [g + D2]

Figure 3.7: Proof of Lemma [L.1].

The [g + p_zero] and [g F p_out W Z P] cases would imply that b is an ob-
ject of type [g + bstep p_zero (b_in X) \y.Q’[..,yl]lor [g - bstep (p_out
W ZP) (b_in X) \y.Q’[..,yl]; however, these types are not inhabited, lead-
ing to an absurd. The impossible keyword, followed by b, is used to perform
pattern matching on b when no constructor matches the structure of b; since
no case has to be addressed, the conclusion is reached.

In the [g F p_in W \z.P[..,z]] case, b is an object of type [g bstep (p_in
W \z.P[..,z]) (b_in X) \y.Q’[..,yl]. We perform inversion on b using the
let keyword, specifying that this object must have been built through the
bs_in constructor. Through this operation, Beluga infers that the type of b is
[g F bstep (p_in X \z.P[..,z]) (b_in X) \z.P[..,z]] and performs unifi-
cation of all the involved variables: for example, it deduces that Q’ equals to
P and that the goal is [g - ex_inp_rew (p_in X \z.P[..,z]) X \z.P[..,z]].
We note that c_sym par_unit, when applied to the appropriate implicit argu-
ments, is an object of type (p_in X \z.P[..,z]) cong ((p_in X \z.P[..,z])
p_par p_zero); analogously, c_sym par_unit denotes the congruence of the
process P[..,y] to P[..,y] p_par p_zero for any y. As a result, the ob-
ject [g + inp_base (c_sym par_unit) \y.(c_sym par_unit)] has the desired

type.

In the [g - Q1 p_par Q2] case, b is an object of type [g - bstep (Q1 p_par
Q2) (b_in X) (\y.Q’[..,y1D]1. By inversion on the variable b, we obtain

two subcases [g + bs_parl B1] and [g + bs_par2 B2]. In each subcase, ei-

ther the left component (); performs an input transition)y @) Ry, en-

36

3.3. EQUIVALENCE OF REDUCTION AND LTS SEMANTICS

coded by the variable B1, or the right component)5 performs an input tran-
sition encoded by B2. We describe the first case only, as the other case
is analogous. We apply a recursive call of the bs_in_rew function on the
arguments [g F Q1] and [g F B1], obtaining an object [g F D1l of type
[g ex_inp_rew Q1 X \y.R1[..,y]] which expresses the rewriting of the pro-

cesses involved in the transition () M R;. To conclude, we aim to obtain an
object of type ex_inp_rew encoding the rewriting for the parallel composition
Q1 | Q2. However, to achieve this, we need to unfold the object [g + D1]
and handle explicit congruences. For this reason, we delegate this task to an
auxiliary lemma bs_in_rew_par1l (respectively, bs_in_rew_par2 in the bs_par2
case). Once this lemma is stated and proved, we reach the conclusion.

— In the [g F p_res \z.P[..,z]] case, the proof follows a similar pattern to
the previous case. Initially, we perform inversion on b through the bs_res
constructor, obtaining a variable B representing the input transition of the
subprocess P. Next, we apply the recursive call of the bs_in_rew function
on this transition, operating in a weaker context (g,z:names), and obtaining
an object of type ex_inp_rew which represents the corresponding rewriting.
Finally, we use the auxiliary lemma bs_in_rew_res to unfold this object and
conclude the proof.

O

We now present the proof of the first auxiliary lemma, bs_in_rew_pari. In mathe-
matical terms, it corresponds to the following result: “given two processes () and
@’ such that Q = (vw)(z(y).P | S) and Q' = (vw)(P | S) for some P, S and w,
then it can be proved that, for any process R in which each w; does not occur free,
Q| R = (vw)(z(y).P' | S) and Q' | R = (vw)(P' | S’) for some processes P’, 5.
In our case, we are going to show that P’ := P and S’ := S | R.

rec bs_in_rew_parl:(g:ctx){R:[g I procl}[g - ex_inp_rew Q X \y.Q’[..,y]]
— [g F ex_inp_rew (Q p_par R) X \y.(Q’[..,y] p_par R[..1)] =
/ total d (bs_in_rew_parl _ _ _ _ _ d) /
mlam R = fn d = case d of
| [g F inp_base C1 \y.C2[..,yl] = [g I inp_base (c_trans (c_par C1)
(c_sym par_assoc)) \y.(c_trans (c_par C2[..,y]) (c_sym par_assoc))]
| [gF inp_ind C1 (\y.C2[..,yl) (\w.Di[..,w])] =
let [g,w:names + D2[..,w]] = bs_in_rew_parl [g,w:names - R[..]]
[g,w:names F D1[..,w]] in [g F inp_ind (c_trans (c_par C1)
sc_ext_par) (\y.(c_trans (c_par C2[..,y]) sc_ext_par)) (\w.D2[..,w])]

Proof Verbalization: Given an object of type [g - ex_inp_rew Q X \y.Q’[..,yl]1,
the goal consists in obtaining an object of type [g F ex_inp_rew (Q p_par R) X
\y.(@Q’[..,y] p_par R[..1)] for any process R. The process R must be explicitly
passed as an argument to the bs_in_rew_par1l function: otherwise, Beluga would
not be able to reconstruct it during recursive calls. After introducing the hypotheses
R and d, we unfold the object d by pattern matching.

37

3.3. EQUIVALENCE OF REDUCTION AND LTS SEMANTICS

— In the inp_base case, the additional hypotheses C1 and C2 denote objects
of type [g - Q cong ((p_in X S) p_par T)] and [g,y:names ~ (Q’ y) cong
((S y) p_par T)]. To construct an ex_inp_rew object for @ | R and Q' | R,
we build the appropriate congruences for these processes as outlined in the
informal proof on page and then pass them to the inp_base constructor.

— In the inp_ind case, C1 and C2 denote objects of type [g - Q cong (p_res P)]
and [g,y:names + (Q’ y) cong (p_res (P’ y))1, while D1 is a derivation of
[g,w:names - ex_inp_rew (P w) X \y.(P’ y w)]. We recursively apply the
function bs_in_rew_parl to the arguments R and D1 in the weaker context
(g,w:names), obtaining a parametric derivation D2 of [g,w:names F ex_inp_rew
((P w) p_par R[..1) X \y.((P’ y w) p_par R[..]1)]; we observe that, when
passing the object [g,w:names + R[..]] in the recursive call, the square brack-
ets are necessary to weaken the process R, originally defined in the stronger
context g, to use it in the context (g,w:names). Finally, we conclude by passing
the appropriate congruences and the object D2 to the inp_ind constructor.

]

We provide the statement of the other two auxiliary lemmas, bs_in_rew_par2 and
bs_in_rew_res. Given their similarity to the previous lemma, we omit their proof
and description.

rec bs_in_rew_par2:(g:ctx){R:[g F procl}[g - ex_inp_rew Q X \y.Q’[..,y]]
— [g F ex_inp_rew (R p_par Q) X \y.(R[..] p_par Q’[..,y1D] =7

I

rec bs_in_rew_res: (g:ctx) [g,z:names F ex_inp_rew Q[..,z] X[..]
\y.Q’[..,z,y]1] — [gF ex_inp_rew (p_res \z.Q[..,z]) X \y.(p_res
\z.Q"[..,z,y1D] =7

Lemma and [1.3} fs_out_rew and bs_out_rew

The encoding of the other two preliminary lemmas, Lemma (1.2l and Lemma fol-
lows the same pattern: first, defining a new type family for the rewriting of processes
involved in free or bound output transitions, with base case and inductive case con-
structors to encode the telescopes; next, constructing the main recursive function
which proves the lemma by induction on the structure of processes; finally, stating
and proving auxiliary lemmas in order to prove the result in specific subcases. It is
worth noting that, analogously to the observation on page [15|for the informal proof,
the bs_open case for the bs_out_rew proof requires calling the recursive function
fs_out_rew and defining an additional auxiliary lemma. We present the definition
of the type families ex_fout_rew and ex_bout_rew, as well as the declaration of the
recursive functions fs_out_rew and bs_out_rew:

LF ex_fout_rew: proc — names — names — proc — type =
| fout_base: Q cong ((p_out X Y R) p_par S) — Q’ cong (R p_par S)
— ex_fout_rew Q X Y Q°
| fout_ind: Q cong (p_res P) — Q’ cong (p_res P’)
— ({w:names} ex_fout_rew (P w) XY (P’ w)) — ex_fout_rew Q X Y Q’

38

3.3. EQUIVALENCE OF REDUCTION AND LTS SEMANTICS

LF ex_bout_rew: proc — names — (names — proc) — type =
| bout_base: Q cong (p_res \z.((p_out X z (R z)) p_par (S z)))
— ({y:names} (Q’ y) cong ((R y) p_par (S y))) — ex_bout_rew Q X Q’
| bout_ind: Q cong (p_res P) — ({y:names} (Q’ y) cong (p_res (P’ y)))
— ({w:names} ex_bout_rew (P w) X \y.(P’ y w)) — ex_bout_rew Q X Q’

I

rec fs_out_rew: (g:ctx) {Q:[g F procl} [g I fstep Q (f_out X Y) Q’]
— [g F ex_fout_rew Q X Y Q’] = 7

rec bs_out_rew: (g:ctx){Q: [g F procl} [g F bstep Q (b_out X) \y.Q’[..,yl]
— [g F ex_bout_rew Q X \y.Q’[..,y]] =7

b

Theorem [1} fstep_impl_red

We provide the encoding of the proof of Theorem , which states that P = Q
implies P — Q:

rec fstep_impl_red: (g:ctx) [g - fstep P f_tau Q] — [g F P red Q] =
/ total f (fstep_impl_red _ _ _ f) /
fn £ = case f of
| [g F fs_parl F1] = let [g F R] = fstep_impl_red [g F F1] in
[g - r_par R]
| [g F fs_par2 F2] = let [g - R] = fstep_impl_red [g F F2] in
[g - r_str par_comm (r_par R) par_comm]
| [g + fs_coml F1 B1] =
let [g F D1] = fs_out_rew [g F _] [g F F1] in
let [g F D2] = bs_in_rew [g F _]1 [g F B1l] in
let [g F R] = fs_coml_impl_red [g - D1] [g F D2] in [g + R]
| [g F fs_com2 Bl F1] =
let [gF D1] = bs_in_rew [g F _] [g F B1] in
let [g - D2] = fs_out_rew [g+ _] [g F F1] in
let [g F R] = fs_com2_impl_red [g - D1] [g F D2] in [g F R]
| [gF fs_res \z.F[..,z]] =
let [g,z:names F R[..,z]] = fstep_impl_red [g,z:names F F[..,z]] in
[g - r_res \z.R[..,z]]
| [g - fs_closel B1 B2] =
let [g F D1] = bs_out_rew [g F _J[g F B1] in
let [g F D2] = bs_in_rew [g - _]1 [g F B2] in
let [g F R] = fs_closel_impl_red [g F D1] [g F D2] in [g F R]
| [g - fs_close2 Bl B2] =
let [gF D1] = bs_in_rew [g F _] [g F B1] in
let [g - D2] = bs_out_rew [g+ _] [g F B2] in
let [g F R] = fs_close2_impl_red [g F D1] [g F D2] in [g F RI]

Proof Verbalization: The function fstep_impl_red takes a term of type [g - fstep
P f_tau Q] as an argument and returns an object of type [g - P red Q1. It is
decreasing on the former argument. The proof proceeds by introducing the vari-
able £, which denotes the 7-transition, and performing pattern matching on it. In

39

3.3. EQUIVALENCE OF REDUCTION AND LTS SEMANTICS

the two fs_par and in the fs_res cases, it is sufficient to recursively apply the
fstep_impl_red function on a structurally smaller transition and conclude using the
appropriate red constructor (r_par, r_str and r_res respectively). In the fs_com
and fs_close cases, we have some input and output transitions as hypotheses: hence
we apply the previously defined functions bs_in_rew, fs_out_rew and bs_out_rew
to obtain two objects, D1 and D2, which contain information about the structure of
the processes involved in the two transitions. Finally, we need to unfold D1 and D2,
in order to show that these processes can perform a reduction: this is achieved by
calling an additional lemma for each case.]

We introduce the encoding of the lemma fs_com1_impl_red applied in the fs_coml
case; the other lemmas are formalized in a similar way. Prior to presenting the code,
we first discuss the proof technique employed.

The £s_com1_impl_red function takes two objects of type [g - ex_fout_rew P1 X
Y Q1] and [g + ex_inp_rew P2 X \x.Q2[..,x]] as arguments, and returns an object
of type [g - (P1 p_par P2) red (Q1 p_par Q2[..,Y])]. In mathematical terms it
states that, given processes P, P, ()1 and ()5 which satisfy the congruences on
page , then P, | P, — Q1 | Q2. The proof requires to perform inversion on
both hypotheses, addressing both the base case and inductive case for each of the
types ex_inp_rew and ex_fout_rew. When considering the inductive case for either
type, the £s_com1_impl_red function needs to be recursively called on a structurally
smaller object of that type. This implies that the fs_com1_impl_red function must
be decreasing on both arguments; according to the Curry-Howard isomorphism,
this corresponds to employing double induction. However, Beluga lacks support for
functions decreasing on more than one argument, thus precluding this method.

In order to clarify the solution adopted for the encoding of double recursion, we
first present the description of its mathematical counterpart. The following theorem
outlines one possible approach to prove that a property P, depending on a pair of
natural numbers n and m, holds true for any n and m:

Theorem.
Let P(n,m) be some property, indexed by n,m € N, such that:

1. P(0,m) is true Vm € N;

2. If P(n,m) is true for some n,m € N, then P(n+ 1,m) is also true;
Then P(n,m) is true ¥n,m € N.

Although distinct from double induction or lexicographic induction, the theorem is
equivalent to these two principles. We note that the first premise of this theorem
can be achieved through single induction on the second parameter when the first
parameter equals 0. Conversely, the second premise represents the inductive step
for induction on the first parameter, for each m € N as a second parameter.
This principle suggests that double recursion can be implemented by decomposing
it into the definition of two single recursive functions. The first function handles
the base case of the first input type and is decreasing on the structure of the second
type; the second function is decreasing on the structure of the first type, and relies
on the call of the first recursive function to address the base case.

We present the encoding of the £fs_com1_impl_red function, decreasing on the first
argument, and the encoding of the fs_com1_impl_red_base function, which handles
the base case of the first argument and is decreasing on the second argument:

40

3.3. EQUIVALENCE OF REDUCTION AND LTS SEMANTICS

rec fs_coml_impl_red_base: (g:ctx) [g - P2 cong ((p_in X \x.R[..,x])
p_par S)] — [g,w:names - Q2[..,w] cong (R[..,w] p_par S[..1)]
— [g F ex_fout_rew P1 X Y Q1]
— [g F (P1 p_par P2) red (Q1 p_par Q2[..,Y])] =
/ total d1 (fs_coml_impl_red_base _ _ _ _ _ _ _ _ _ _ _ d1) /
fn ¢c3 = fn c4 = fn dl = case dl of
| [g F fout_base C1 C2] =
let [g - C3] = c3 in
let [g,w:names - C4[..,w]] = c4 in
[g - r_str (c_trans (c_par C1) (c_trans par_comm (c_trans (c_par C3)
par_comm))) (r_str par_assoc (r_par (r_str (c_trans (c_par par_comm)
(c_trans (c_sym par_assoc) par_comm)) (r_par r_com) (c_trans par_comm
(c_trans par_assoc (c_par par_comm))))) (c_sym par_assoc)) (c_trans
(c_par (c_sym C2)) (c_trans par_comm (c_trans (c_par
(c_sym C4[..,_1)) par_comm)))]
| [g F fout_ind C1 C2 \w.D1[..,w]] =
let [g - C3] = c3 in
let [g,y:names - C4[..,y]] = c4 in
let [g,w:names F R1[..,w]] = fs_coml_impl_red_base
[g,w:names F C3[..]] [g,w:names,y:names F C4[..,y]l]
[g,w:names - D1[..,w]] in
[g - r_str (c_trans (c_par C1) sc_ext_par) (r_res \w.R1[..,w])
(c_trans (c_sym sc_ext_par) (c_par (c_sym C2)))]

Note that the base case of this lemma, corresponding to the base case of both types
ex_inp_rew and ex_fout_rew, is addressed through a complex chain of congruences
and reductions, mirroring the structure of the informal proof provided on page [16]

rec fs_coml_impl_red: (g:ctx) [g F ex_fout_rew P1 X Y Q1]
— [g F ex_inp_rew P2 X \x.Q2[..,x]]
— [g F (P1 p_par P2) red (Q1 p_par Q2[..,Y])] =
/ total d2 (fs_coml_impl_red dz2) /
fn d1 = fn d2 = case d2 of
| [g + inp_base C3 \y.C4[..,yl]l =
let [g - R] = fs_coml_impl_red_base [g I C3]
[g,y:names - C4[..,y]] d1 in [g F R]
| [g F inp_ind €3 (\y.C4[..,yl) (\w.D2[..,w])] =
let [g F D1] = d1 in
let [g,w:names + R1[..,w]] = fs_coml_impl_red [g,w:names F D1[..]]
[g,w:names ~ D2[..,w]] in
[g - r_str (c_trans par_comm (c_trans (c_par C3) (c_trans sc_ext_par
(c_res \w.par_comm)))) (r_res \w.R1[..,w]) (c_trans (c_res
\w.par_comm) (c_trans (c_sym sc_ext_par) (c_trans (c_par
(c_sym C4[..,_1)) par_comm)))]

41

3.3. EQUIVALENCE OF REDUCTION AND LTS SEMANTICS

3.3.2 Theorem 2: Reduction Implies 7-Transition

In the proof of Theorem [2| we rely on two main lemmas: Lemma [2.6) and Lemma
Lemma [2.6| requires five auxiliary lemmas regarding free and bound names in
processes and transitions. The majority of these auxiliary lemmas does not neces-
sitate explicit formulation and proof in Beluga. In fact, these lemmas were applied
in the proof of Lemma [2.6] with the purpose of verifying the satisfaction of side
conditions for transition rules. However, as previously explained in section [3.2.2]
explicit enunciation of side conditions in the Beluga encoding is not necessary, due
to the employment of higher-order abstract syntax; as a result, during a proof, the
system automatically determines whether these side conditions are met or not.

While Lemmas 2.1} 2.2] and do not require an explicit statement, the
Beluga encoding relies on the following result, related to Lemma [2.4f “given a con-
textual object of type [g,x:names + fstep P[..] A Q], then it can be shown that
[g - fstep P A’ Q’] holds, with A’ [..]=Aand Q’ [..]1=Q in the context (g,x:names).
The same holds true for bound transitions as well”. In other words, this statement
asserts that, given a transition P = () where z does not occur free in P nor bound
in any other entity (due to variable conventions), then z does not occur free in either
a and @. Since this result involves strengthening the context in which an object is
defined, it can be referred to as a “strengthening lemma”.

Strengthening Lemma: strengthen_fstep and strengthen_bstep

We begin with the definition of three type families encoding equality of processes,
free actions and bound actions. Since the Logical Frameworks LF do not provide
any built-in equality notion, we must define a type family representing equality for
each of these types. Each type family presents only one constructor, which relates
equal terms. We only present the definition of the type family eqp which encodes
equality of processes; the other type families eqf and eqgb for free and bound actions
are defined analogously.

LF eqp: proc — proc — type =

| prefl: eqp P P
Next, we need to define two type families encoding the existence of a transition in a
stronger context, given an initial transition in a weaker context with the hypotheses
described above. However, unlike the existential definitions in the previous section,
we are now dealing with a property about a LF contextual object (the initial transi-
tion); this implies that the new type families must be parametrized by a contextual
object. Although this cannot be done at the LF level, this judgement can be en-
coded at the computation level [21].
The corresponding type families ex_str_fstep and ex_str_bstep are defined through
the following declaration:

inductive ex_str_fstep: (g:ctx) [g,x:names - fstep P[..] A Q] — ctype =
| ex_fstep: {F:[g,x:names + fstep P[..] A Ql} [g I fstep P A’ Q’]
— [g,x:names - eqf A A’[..]] — I[g,x:names - eqp Q Q°[..]1]
— ex_str_fstep [g,x:names F F]

42

3.3. EQUIVALENCE OF REDUCTION AND LTS SEMANTICS

inductive ex_str_bstep: (g:ctx) [g,x:names F bstep P[..] A \z.Q[..,x,z]]
— ctype =
| ex_bstep: {B:[g,x:names F bstep P[..] A \z.Q[..,x,z]]1}
[g - bstep P A> \z.Q’[..,z]] — [g,x:names I eqb A A’[..]]
— [g,x:names,z:names ~ eqp Q[..,x,z] Q’[..,z]]
— ex_str_bstep [g,x:names F B]

The inductive .. ctype syntax is used to define inductive type families at the
computation level in Beluga. The type family ex_str_fstep is indexed by an ob-
ject of type [g,x:names - fstep P[..] A Q], representing a free transition in the
context (g,x:names) where x does not occur free in P; additionally, the type fam-
ily is implicitly parametrized by the context g and by the other entities appearing
in the transition. The constructor ex_fstep estabilishes that, for any F of type
[g,x:names - fstep P[..] A Q], we have that ex_str_fstep F holds true in case
[g - fstep P A’ Q’] is verified for some objects A’ and Q’; these objects, defined
in the context g, must be respectively equal to A and Q in the weaker context
(g,x:names). The definition of the ex_str_bstep type family for the existence of
bound transitions may appear more complex due to the increased amount of variable
dependencies, but its meaning is analogous to the previous definition.

The strengthening lemma is encoded through the definition of two mutually
recursive functions, strengthen_fstep and strengthen_bstep, which take an object
representing a free or bound transition and return an appropriate object of type
ex_str_fstep or ex_str_bstep, respectively. In this section, we present only the
declaration of these functions; the proof term is left to Appendix [C]

rec strengthen_fstep: (g:ctx) {F:[g,x:names - fstep P[..] A Ql}
— ex_str_fstep [g,x:names - F] =7

and rec strengthen_bstep: (g:ctx) {B:[g,x:names F bstep P[..] A
\z.Q[..,x,z]1} — ex_str_bstep [g,x:names - B] = ?

3

Lemma cong_fstepleft_impl_fstepright (and others)

We recall the statement of Lemma “if P=Q and P P’, then there exists a
process @' such that Q = Q' and P’ = Q'”. It was proved along with its symmetrical
counterpart: “if P = Q and Q = @', then there exists a process P’ such that P = P’
and P’ = Q"". The following diagrams display the two statements:

P o= Q P=4q
I G
po= poE g

As the conclusion of the lemma includes an existential quantification, we need to
define a new type family encoding it. However, since the statement involves tran-
sitions through a generic action v which can be either free or bound, we actually
require two new type families: one for free transitions and one for bound transitions.

43

3.3. EQUIVALENCE OF REDUCTION AND LTS SEMANTICS

LF ex_fstepcong: proc — proc — f_act — proc — type =
| fsc: fstep Q A Q° — P’ cong Q° — ex_fstepcong P Q A P’

b

LF ex_bstepcong: proc — proc — b_act — (names — proc) — type =

| bsc: bstep Q A Q° — ({x:names} (P’ x) cong (R’ x))

— ex_bstepcong P Q A P’
The constructor fsc estabilishes that ex_fstepcong P Q A P’ holds if there exists a
process Q’ such that fstep Q A Q’ and P’ cong Q’ hold. Similarly, the constructor
bsc estabilishes that ex_bstepcong P Q A P’ holds if there exists a process abstrac-
tion Q’ such that bstep Q A Q’ holds and (P’ x) cong (Q’ x) holds for any name
x. We observe that the process P does not play any role in the definitions of the fsc
and bsc constructors: for this reason, the two type families could be defined without
the first argument P. Nevertheless, we are going to keep the redundant definition
of the two type families, as the more concise definition leads to a coverage error in
a further demonstration. The cause of the coverage error, detected by the Beluga
totality checker, remains unknown.

Lemma [2.6|is encoded through the definition of the following four mutual recur-
sive functions: cong_fstepleft_impl_stepright, cong_fstepright_impl_stepleft,
cong_bstepleft_impl_stepright and cong_bstepright_impl_stepleft. Since the
lemma statement involves transitions via a generic action «, the first two recursive
functions prove the result for free transitions, while the last two functions demon-
strate the result for bound transitions. Moreover, since the proof is carried out
by concurrently estabilishing two symmetrical assertions, the odd functions prove
the “left” statement, while the even functions demonstrate the “right” statement.
We present the declaration of these four recursive functions, along with the proof
terms corresponding to the same cases discussed in the informal proof on page |21
totality annotations are omitted, as we are reporting a partial proof. The complete
demonstration is provided in Appendix [C]

We begin with the first function, cong_fstepleft_impl_stepright, which proves
the “left” assertion for free transitions. The corresponding proof is provided in
Figure [3.8|

Proof Verbalization: The proof proceeds by induction on the structure of the con-
gruence c.

— In the par_assoc case, c represents the congruence P | (Q | R) = (P | Q) | R.
We begin by pattern matching on the free transition £, which is a transition
starting from the process P | (Q | R); here, we only address the case in which
f has the form fs_par2 F, for some free transition F starting from the process
@ | R. We proceed with another pattern matching on F, considering only
the case where it has the form fs_closel B1 B2; B1 denotes a bound output
transition from () and B2 denotes a bound input transition from R. At this
stage, we conclude by exhibiting the encodings of the required transition and
congruence, provided in the informal proof on page these two objects are
embedded within the fsc constructor, in order to return an object of type
ex_fstepcong.

44

3.3. EQUIVALENCE OF REDUCTION AND LTS SEMANTICS

rec cong_fstepleft_impl_fstepright: (g:ctx) [g F P cong Q]
— [g - fstep P A P’] — [g I ex_fstepcong P Q A P’] =
fn ¢ = fn f = case c of
| [g F par_assoc] =
(case f of
| [g + fs_par2 F] =
(case [g F F] of
| [g - fs_closel Bl B2] =
[g - fsc (fs_closel (bs_par2 B1l) B2) (c_trans
par_comm (c_trans sc_ext_par (c_trans (c_res
\x.par_comm) (c_res \x.par_assoc))))]
)
)
| [g F sc_ext_par] =
(case f of
| [g + fs_par2 F2] =
[g - fsc (fs_res \x.(fs_par2 F2[..])) sc_ext_par]
)
| [g F c_par C1] =
(case f of
| [g F fs_par2 F1] = [g F fsc (fs_par2 F1) (c_par C1)]
)
| [gF c_sym C’] =
let [g - D] = cong_fstepright_impl_fstepleft [g - C’] f in [g F DI

Figure 3.8: Proof of Lemma [2.6] (first part).

— The proof of the sc_ext_par and c_par subcases presented here is quite straight-
forward: after performing inversion on ¢ and f, we can immediately provide
the required transition and congruence. Unlike the informal proof, there is
no need to apply additional lemmas regarding free and bound variables, since
variable dependencies are automatically inferred by the system.

— The c_sym case, which was originally not selected in the informal proof on
Chapter 2, is presented here in order to exhibit the recursive call of the sym-
metrical function cong_fstepright_impl_stepleft, which is sufficient to con-
clude.

]

We provide the proof of the lemma cong_fstepright_impl_stepleft, which proves
the “right” assertion for free transitions, in Figure [3.9

Proof Verbalization: The proof proceeds by induction on the structure of the con-
gruence c.

— In the sc_ext_par case, c represents the congruence (vz)P | Q = (vx)(P | Q)
where x does not occur free in). By inversion on £, which denotes a tran-
sition starting from (vz)(P | @), we obtain that it can only have the struc-
ture [g - fs_res \x.F[..,x]]: the S-OPEN case present in the informal proof
is handled by the cong_bstepright_impl_stepleft function, as it involves a

45

3.3. EQUIVALENCE OF REDUCTION AND LTS SEMANTICS

and rec cong_fstepright_impl_fstepleft: (g:ctx) [g - P cong Q]
— [g - fstep Q A Q] — [g F ex_fstepcong Q P A Q’] =
fn ¢ = fn f = case c of
| [g F sc_ext_par] = let [g F fs_res \x.F[..,x]] = £ in
(case [g,x:names F F[..,x]] of
| [g,x:names + fs_coml Fi[..,x] B1i[..,x]] =
let ex_bstep [g,x:names - B1[..,x]] [g F B1’] el e2 =
strengthen_bstep [g,x:names F B1[..,x]] in
let [g,x:names F brefl] = el in
let [g,x:names,z:names - prefl] = e2 in
let [g,x:names F+ F1[..,x]]:[g,x:names - fstep P (f_out
Z[..] W) P’] = [g,x:names F F1[..,x]] in
(case [g,x:names F W] of
| [g,x:names F #w[..]] = [g F fsc (fs_coml (fs_res
\x.F1[..,x]) B1’) (c_sym sc_ext_par)]
| [g,x:names F x] = [g F fsc (fs_closel (bs_open
\x.F1[..,x]) B1’) c_ref]
)
| [g,x:names - fs_closel B1i[..,x] B2[..,x]] =
let ex_bstep [g,x:names - B2[..,x]] [g - B2’] el e2 =
strengthen_bstep [g,x:names F B2[..,x]] in
let [g,x:names - brefl] = el in
let [g,x:names,z:names F prefl] = e2 in
[g - fsc (fs_closel (bs_res \x.Bi[..,x]) B2’)
(c_trans sc_ext_res (c_res \w.(c_sym sc_ext_par)))]
)
| [gF c_sym C’] = let [g I D] = cong_fstepleft_impl_fstepright
[g - C’] £ in [g F D]

Figure 3.9: Proof of Lemma (second part).

bound transition. We proceed by pattern matching on the contextual object
[g,x:names - F[..,x]], which represents a transition from (P | @) through
an action o whose names do not include x. We consider two of the correspond-
ing subcases:

e In the fs_coml case, F takes the form [g,x:names + fs_coml Fi[..,x]
Bi[..,x]]. Here, F1 has type [g,x:names - fstep P (f_out Z W) P’]
and denotes a free output transition from P, while B1 has type [g,x:names
F bstep Q[..] (b_in Z) \y.Q’[..,x,y]] and denotes an input transi-
tion from). To eliminate the dependency on the name x from B1 and
obtain a transition B1’ defined in the stronger context g, we apply the
function strengthen_bstep to B1 and unfold the objects el and e2 en-
coding equality. Next, we give an explicit type annotation to the object
F1, in order to assign the explicit name W to the output name. Finally,
we perform pattern matching on the output name W, which is defined
in the context (g,x:names): it can either be equal to x or be another
variable occuring in the context g. Analogously to the informal proof, we
conclude by exhibiting a different transition and congruence based on the
case considered. We note that the syntax #w denotes parameter variables,

46

3.3. EQUIVALENCE OF REDUCTION AND LTS SEMANTICS

i.e. variables occurring within a context; in this situation, a parameter
variable is used to assert that W occurs within the context g.

e In the fs_close case, the proof is similar to the previous case: we apply
the function strengthen_bstep to obtain a transition defined in a stronger
context and then conclude. Unlike the informal proof, additional lemmas
are not required and side conditions are automatically verified.

— In the c_sym case we conclude by recursively calling the symmetrical function
cong_fstepleft_impl_stepright.

]

We provide the proof of the lemma cong_bstepleft_impl_stepright, which proves
the “left” assertion for bound transitions.

and rec cong_bstepleft_impl_bstepright: (g:ctx) [g F P cong Q]
— [g I bstep P A \x.P’[..,x]] — [g | ex_bstepcong P Q A \x.P’[..,x]] =
fn ¢ = fn b = case ¢ of
| [g F sc_ext_par] =
(case b of
| [g F bs_par2 B2] =
[g - bsc (bs_res \x.(bs_par2 B2[..])) \x.sc_ext_par]
)
| [g F c_par C1] =
(case b of
| [g F bs_par2 B1] =
[g - bsc (bs_par2 B1l) \x.(c_par C1i[..])]

Figure 3.10: Proof of Lemma (third part).

Proof Verbalization: The proof proceeds by induction on the structure of the congru-
ence c. The subcases sc_ext_par and c_par are proved analogously to their counter-
parts in the cong_fstepleft_impl_stepright function; together with the proof terms
in the former function, they complete the encoding of the corresponding subcases
of the informal proof. O

Lastly, we provide the proof of the lemma cong_bstepright_impl_stepleft, which
proves the “right” assertion for bound transitions, in Figure [3.11}

Proof Verbalization: The proof proceeds by induction on the structure of the con-
gruence c. Here, we only consider the sc_ext_par case, in which c represents the
congruence (vz)P | Q = (vz)(P | Q) where x does not occur free in (). We perform
pattern matching on the bound variable b, representing a transition which starts
from the process (vx)(P | Q); here, we only consider the [g + bs_open \x.F[..,x]]
case. The variable F denotes the transition (P | Q) => R, with x # 2. By pattern
matching on F we obtain two subcases, fs_parl and fs_par2: analogously to the in-
formal proof, in the first case we conclude by exhibiting the required congruence and
transition, while in the second case we conclude through the impossible keyword
due to a contradiction. O

47

3.3. EQUIVALENCE OF REDUCTION AND LTS SEMANTICS

and rec cong_bstepright_impl_bstepleft: (g:ctx) [g - P cong Q]
— [gF bstep Q A \x.Q’[..,x]] — [gF ex_bstepcong Q P A \x.Q’[..,x]] =
fn ¢ = fn b = case c of
| [g F sc_ext_par] =
(case b of
| [g - bs_open \x.F[..,x]] =
(case [g,x:names F F[..,x]] of
| [g,x:names ~ fs_parl Fi[..,x]] =
[g - bsc (bs_parl (bs_open \x.Fi[..,x])) \x.c_ref]
| [g,x:names - fs_par2 F2[..,x]] =
let ex_fstep [g,x:names F F2[..,x]] [g F F2’] el e2 =
strengthen_fstep [g,x:names F F2[..,x]] in impossible el

Figure 3.11: Proof of Lemma (fourth part).

Lemma [2.7} red_impl_red_rew

We recall the statement of Lemmal[2.7} “if P — @, then there exist three names x,y
and z, a finite (possibly empty) set of names wy, ..., w, and three processes R;, Ry
and S such that P = (vwy)...(vw,)((Zy.Ry | (2).Ry) | ') and

Q = (vwy).o.(vwn) (Ry | Rafy/2}) | S)

Analogously to the encodings of lemmas [1.1] and [[.3] we define a new type
family ex_red_rew which encodes the existence of two congruences as stated in the
conclusion of Lemma 2.7 in other words, it encodes the rewriting (up to congruence)
of processes involved in a reduction. This type family has two constructors for the
encoding of telescopes.

LF ex_red_rew: proc — proc — type =
| red_base: P cong (((p_out X Y R1) p_par (p_in X R2)) p_par S)
— Q cong ((R1 p_par (R2 Y)) p_par S) — ex_red_rew P Q
| red_ind: P cong (p_res P’) — Q cong (p_res Q’)
— ({w:names} ex_red_rew (P’ w) (Q’ w)) — ex_red_rew P Q
The type ex_red_rew is indexed by two processes. The first constructor red_base
estabilishes this fact: if P cong (((p_out X Y R1) p_par (p_in X R2)) p_par S)
holds for some processes R1, S and a process abstraction R2, and if Q cong ((R1 p_par
(R2 Y)) p_par S) holds as well, then ex_red_rew P Q holds. The second construc-
tor red_ind states that if P and @) are congruent to restrictions (vw)P’ and (vw)@Q’
respectively, and ex_red_rew (P’ w) (Q’ w) holds for any choice of binder name w,
then ex_red_rew P Q holds.

We present the proof of Lemma [2.7] in Figure [3.12]

Proof Verbalization: The proof proceeds by introducing the variable r, denoting the
reduction [g F P red Q], and performing pattern matching on it.

— In case r is obtained through the constructor r_com, we have that P and Q have
the form (p_out X Y R1) p_par (p_in X R2) and R1 p_par (R2 Y), respec-
tively. We conclude by providing the congruences P cong (((p_out X Y R1)

48

3.3. EQUIVALENCE OF REDUCTION AND LTS SEMANTICS

rec red_impl_red_rew: (g:ctx) [ghF P red Q] — [g I ex_red_rew P Q] =
/ total r (red_impl_red_rew _ _ _ r) /
fn r = case r of
| [gF r_com] = [g I+ red_base (c_sym par_unit) (c_sym par_unit)]
| [gF r_par R1]:[g - (P p_par R) red (Q p_par R)] =
let [g F D1] = red_impl_red_rew [g - R1] in
let [g F D2] = red_impl_red_rew_par [g - R] [g F D1] in [g F D2]
| [g F r_res \z.R1[..,z]] =
let [g,z:names + D1[..,z]] = red_impl_red_rew
[g,z:names F R1[..,z]] in
let [g D2] = red_impl_red_rew_res [g,z:names - D1[..,z]] in
[g + D2]
| [g+ r_str C1 R1 C2] =
let [g F D1] = red_impl_red_rew [g - R1] in
let [g - D2] = red_impl_red_rew_str [g F C1] [g - D1] [g F C2] in
[g + D2]

Figure 3.12: Proof of Lemma 2.7

p_par (p_in X R2)) p_par p_zero) and Q cong ((R1 p_par (R2 Y)) p_par
p_zero), which are witnessed by the object c_sym par_unit, within the object
[g - red_base (c_sym par_unit) (c_sym par_unit)].

— In the other three cases, the proofs have the same structure: we recursively
invoke the function red_impl_red_rew on a structurally smaller reduction R1,
obtaining the corresponding object D1 of type ex_red_rew; then, we use an
additional lemma for each case, in order to unfold the object D1 and build the
required rewriting of processes.

]

We now present the proof of the auxiliary lemma red_impl_red_rew_par in Figure
3.13] omitting details regarding the other two auxiliary lemmas. In mathematical
terms, it corresponds to the following result: “given two processes P and () such
that P = (vw)((zy.Ry | z(2).R2) | S) and @ = (vw)((Ry | Re{y/z}) | S) for
some Ry, Ry, S and w, then it can be demonstrated that, for any process R in
which each w; does not occur free, P | R = (vw)((Zy.R} | z(2).R,) | S") and
Q| R=(vw)((R) | Ry{y/z}) | 5') for some processes R, R, and S"”. In our case,
we are going to show that R} := Ry, R, := Ry and S’ :== S | R.

Proof Verbalization: The proof proceeds by performing pattern matching on the
variable d.

— In case d has the form [g - red_base C1 C2], the objects C1 and C2 represent
the congruences P = (Zy.Ry | z(2).R2) | S and Q = (Ry | Ro{y/2}) | S.
We immediately conclude by providing the appropriate congruences of the
processes P | R and @ | R.

— If d has the form [g + red_ind C1 C2 \w.D1[..,w]], C1 and C2 denote ob-
jects of type [g P cong (p_res P’)] and [g - Q cong (p_res Q’)], while

49

3.3. EQUIVALENCE OF REDUCTION AND LTS SEMANTICS

rec red_impl_red_rew_par: (g:ctx) {R:[g - procl} [g - ex_red_rew P Q]
— [g ex_red_rew (P p_par R) (Q p_par R)] =
/ total d (red_impl_red_rew_ par _ _ _ _ d) /
mlam R = fn d = case d of
| [g F red_base C1 C2] =
[g - red_base (c_trans (c_par Cl1) (c_sym par_assoc))
(c_trans (c_par C2) (c_sym par_assoc))]
| [g - red_ind C1 C2 \w.D1[..,w]l] =
let [g,w:names - D2[..,w]] = red_impl_red_rew_par
[g,w:names - R[..]] [g,w:names - D1[..,w]] in
[g - red_ind (c_trans (c_par C1) sc_ext_par)
(c_trans (c_par C2) sc_ext_par) \w.D2[..,w]]

Figure 3.13: Proof of the auxiliary lemma for Lemma

D1 denotes an object of type [g,w:names F ex_red_rew (P’ w) (Q’ w)]. We
recursively apply the function red_impl_red_rew_par to the arguments R[..],
D1 in the weaker context (g,w:names), obtaining a parametric derivation D2
of [g,w:names - ex_red_rew ((P’ w) p_par R[..]) ((Q’ w) p_par R[..1)].
Finally, we conclude by passing the appropriate congruences and the object
D2 to the red_ind constructor.

]

Theorem red_impl_fstepcong

We provide the proof encoding for Theorem [2| which states that P — @ implies the
existence of a @’ such that P 5 Q" and Q = Q'.

rec red_impl_fstepcong: (g:ctx) [g F P red QI
— [g F ex_fstepcong P P f_tau Q] =
/ total r (red_impl_fstepcong _ _ _ r) /
fn r = let [g F D1] = red_impl_red_rew r in
let [g F D2] = red_rew_impl_fstepcong [g D1] in [g + D2]

Proof Verbalization: We introduce the variable r, which represents the reduction
P — @. Then, we apply the function red_impl_red_rew on r, returning an ob-
ject D1 of type [g - ex_red_rew P Q], which encodes the following congruences
for some Ry, Ry, S and w: P = (vwq)...(vw,)((Ty.Ry | x(2).Rs) | S) and Q =
(vwy)...(vw,)((R1 | Ra{y/z}) | S) . Finally, we invoke the auxiliary function
red_rew_impl_fstepcong, which unfolds the argument D1 and returns the desired
object of type [g + ex_fstepcong P P f_tau Q]. O

We now present the encoding of the auxiliary lemma used in the former proof,
implemented by the recursive function red_rew_impl_fstepcong. In mathematical
terms, it corresponds to demonstrating the following result: “given the congruences
P = (vw)((zy.Ry | ©(2).R2) | S) and @Q = (vw)((Ry | Ro{y/z}) | S) for some Ry,
R,, S and w, then there exists a process @ such that P - Q' and Q = Q.

50

3.3. EQUIVALENCE OF REDUCTION AND LTS SEMANTICS

rec red_rew_impl_fstepcong: (g:ctx) [g F ex_red_rew P Q]
— [g ex_fstepcong P P f_tau Q] =
/ total d (red_rew_impl_fstepcong _ _ _ d) /
fn d = case d of
| [g F red_base C1 C2] =
let [g F fsc F C3] = cong_fstepright_impl_fstepleft
[g - C1] [g F fs_parl (fs_coml fs_out bs_in)] in
[g - fsc F (c_trans C2 C3)]
| [g F red_ind C1 C2 \w.D1[..,w]] =
let [g,w:names + fsc F1[..,w] C3[..,w]] =
red_rew_impl_fstepcong [g,w:names F D1[..,w]] in
let [g - fsc F2 C4] = cong_fstepright_impl_fstepleft
[g - C1] [gF fs_res \w.F1[..,w]] in
[g F fsc F2 (c_trans C2 (c_trans (c_res \w.C3[..,w]) C4))]

Proof Verbalization: The proof proceeds by performing pattern matching on the
variable d.

— If d has the form [g F red_base C1 C2], the objects C1 and C2 denote congru-
ences of type [g - P cong (((p_out X Y R1) p_par (p_in X R2)) p_par S)]
and [g - Q cong ((R1 p_par (R2 Y)) p_par S)] respectively. For ease of no-
tation, we set P = P” and Q = Q" for the congruences above. We apply the
function cong_fstepright_impl_fstepleft on the arguments C1, representing
the congruence P = P” and (fs_parl (fs_coml fs_out bs_in)) (x), repre-
senting the transition P” = Q”; as a result, we obtain the objects F and 3,
respectively denoting the transition P = @’ and the congruence Q" = @,
as illustrated in the diagram below. Finally, we conclude by exhibiting the
transition F and the congruence c_trans €2 €3, which states that Q) = '.

C1
P P = P
J = FET *JT
+ C3 Cc2
Q Q = Q = Q

Figure 3.14: Graphical representation of the red base case in the former proof.

— If 4 has the form [g + red_ind C1 C2 \w.D1[..,w]], C1 and C2 denote con-
gruences of type [g - P cong (p_res P’?)] and [g - Q cong (p_res Q’’)],
while D1 has type [g,w:names F ex_red_rew (P’’ w) (Q’’ w)]. By recur-
sively applying the function red_rew_impl_fstepcong on D1 in the weaker
context (g,w:names), we obtain an object of type ex_fstepcong of the form
fsc F1 C3: the variable F1 denotes a transition of type [g,w:names - fstep
(P’’ w) f_tau (R’’ w)], while the variable C3 denotes a congruence of type
[g,w:names - (Q’’ w) cong (R’’ w)]. Thus, the term (fs_res \w.F1i[..,w])
(%) denotes a transition [g - fstep (p_res P’’) f_tau (p_res R’’)]. By ap-
plying the function cong_fstepright_impl_fstepleft on the transition (x)
and the congruence C1, we obtain the objects F2 and C4: the former denotes

51

3.3. EQUIVALENCE OF REDUCTION AND LTS SEMANTICS

a transition [g F fstep P f_tau Q’], while the latter denotes a congruence
[g - (p_res R’’) cong Q’]. Finally, we provide the required transition and

congruence, as displayed in the following diagram.

C1
P P = (vw)P”
‘/ = F2 i T *‘/T
v ca c.res C3 c2
Q Q = (vw)R' = (vw)Q" = Q

Figure 3.15: Graphical representation of the red_ind case in the former proof.

52

Chapter 4

Conclusions

4.1 Evaluation

In this thesis, we provide a formalization of two operational semantics for a frag-
ment of the w-calculus and their equivalence in Beluga. Our implementation is
organized in 2 theorems supported by 32 lemmas; it contains less than 100 lines
of code for definitions and less than 600 lines for proofs. In Table we ex-
hibit a summary of definitions and proofs, together with their respective name in
the Beluga encoding; Figures and display the dependency tree of the two
theorems. Note that the tree in Figure is split into two parts due to space
constraints: the red_rew_impl_fstepcong node is intended to be connected to the
cong_fstepright_impl_fstepleft node. The complete formalization is accessible at
https://github.com/GabrieleCecilia/concurrent-benchmark-solution. The
code presented in this thesis is directly taken from the executables available there.

The choice of the proof assistant Beluga offers several benefits. The HOAS
encoding eliminates the need to state and prove technical lemmas regarding a-
renaming and substitution. Additionally, this technique leads to a simplification
of definitions and proofs, since there is no need to address side conditions about
semantics rules. We also observe that the formal proof does not require lemmas
about free and bound variables, unlike the informal one; the only technical lemma
needed is the strengthening lemma, common in HOAS encodings, which can be seen
as the counterpart of a lemma present in the informal proof.
A significant result is the one-to-one correspondence between informal and formal
proof, apart from some duplication of definitions and theorems; as previously men-
tioned, this correspondence is displayed in Table [4.1] Each lemma and theorem
corresponds to a recursive function; application of the inductive hypothesis to an
argument matches to the recursive call of the function on the respective argument;
case analysis is encoded through pattern matching. A noteworthy example of this
correspondence occurs in Lemma [2.6] which includes a case distinction based on the
equality of names; this translates into pattern matching over a name defined in a
certain context, with the use of parameter variables to encode inequality. Despite
the computational complexity that follows from the use of mutually recursive pred-
icates and functions, the totality checker consistently ensures that each recursive
function represents a proof. Although an unknown coverage error occurred in one
instance, this issue was resolved by modifying a predicate definition.

One drawback of the HOAS encoding for the LTS semantics consists in the def-
inition of two distinct types for free and bound transitions, which results in the

53

https://github.com/GabrieleCecilia/concurrent-benchmark-solution

4.1.

EVALUATION

‘ Definitions and Proofs Name in Beluga ‘ Sections ‘
‘ Names, processes names, proc ‘ 2.1, 3.1 ‘
‘ Congruence, reduction cong, red ‘ 2.2.1,3.2.1 ‘
‘ Actions, transitions f_act, b_act, fstep, bstep ‘ 2.2.2,3.22 ‘
Rewriting of processes
involved in input transitions: bs_in_rew 2.3.1, 3.3.1
Lemma 1.1
Rewriting of processes
involved in free output fs_out_rew 2.3.1, 3.3.1
transitions: Lemma 1.2
Rewriting of processes
involved in bound output bs_out_rew 2.3.1,3.3.1
transitions: Lemma 1.3
T-transition implies
. fstep_impl_red 2.3.1, 3.3.1
reduction: Theorem 1 step-1mpt-re 3.1, 3.3
Auxiliary lemmas about
free/bound names in strengthen_fstep, 939 339
processes/actions: Lemma strengthen_bstep R
2.1 to 2.5
Congruence and left cong_fstepleft_impl_fstepright,
transition implies right cong_fstepright_impl_fstepleft,
s . . 2.3.2,3.3.2
transition and congruence: cong_bstepright_impl_bstepleft,
Lemma 2.6 cong_fstepleft_impl_fstepright
Rewriting of processes
involved in reductions: red_impl_red_rew 2.3.2,3.3.2
Lemma 2.7
Reduction implies
T-transition and congruence: red_impl_fstepcong 2.3.2,3.3.2
Theorem 2

Table 4.1: Correspondence between informal and formal definitions and proofs.

54

4.1. EVALUATION

bs_in_rew_parl
bs_in_rew bs_in_rew_par2

bs_in_rew_res

fs_out_rew_paril
fs_out_rew fs_out_rew_par2

fs_out_rew_res
fs_out_rew_paril

fs_out_rew fs_out_rew_par2

fs_out_rew_res
fstep_impl_red bs_out_rew_parl

bs_out_rew
bs_out_rew_par2

bs_out_rew_res

bs_out_rew_open

fs_coml_impl red — fs_coml_impl_red_base

fs_com2_impl_red — fs_com2_impl_red_base
fs_closel_impl red — fs_closel_impl_red_base
fs_close2_impl._red — fs_close2_impl_red_base

Figure 4.1: Dependency tree of the fstep_impl red theorem.

red_impl_red_rew_par
red_impl_red rew red_impl red rew_res

red_impl_fstepcong red_impl_red_rew_str

red rew_impl _fstepcong \

(continues below)

cong_fstepleft_impl _fstepright

cong_bstepleft_impl _fstepright

\ cong_fstepright_impl _fstepleft cong_bstepright_impl_fstepleft
strengthen fstep

strengthen_bstep

Figure 4.2: Dependency tree of the red impl fstepcong theorem.

95

4.2. RELATED AND FUTURE WORK

duplication of some lemmas into pairs of mutual recursive functions. Moreover, the
impossibility to prove conjunctions of statements in Beluga (such as in double impli-
cations or situations with symmetric predicates) leads to the duplication of lemmas
regarding congruence. Additionally, the absence of a construct for existentials re-
quires the definition of new type families to encode them. Overall, we believe that
the advantages of employing Beluga outweigh these disadvantages.

Although the second challenge of the Concurrent Calculi Formalization Bench-
mark focuses on a subset of the m-calculus without some process constructs, we
believe that our work holds practical utility for several reasons.

In the first place, both the informal and formal proof provided in this thesis are new.
The equivalence between LTS and reduction semantics is a well-known result in the
theory of m-calculus, and sources like Sangiorgi & Walker [23] already outline the
main steps of its proof; however, as far as we know, there is no complete informal or
formal proof of this theorem in the literature. While this result is generally accepted
and undisputed for the standard m-calculus, the same cannot be said for extensions
of the calculus, or when a new notion of bisimilarity is introduced; in such cases,
the equivalence of the semantics might be subject to discussion.

Next, this thesis introduces a custom technique for encoding telescopic sequences
of binders in processes and proving results about them; this approach also elimi-
nates the need to define normalized derivations for reductions. Given a reduction
r: P — (), a normalized derivation of r is a derivation in which reduction rules are
applied in a specific order: namely, the first rule applied is R-Cowm, followed by a
R-PAR, a finite (potentially empty) series of R-REs, and finally a R-STrucT. This
notion is introduced in [23], where it is proved that every sequence of reductions has
a normalized derivation; as a consequence, the same rewriting of processes involved
in a reduction described in Lemma [2.7| can be obtained. In the previous sections we
illustrated how this result can be obtained directly through an induction over the
reduction’s structure, and how the formalization is made possible by the encoding
technique for telescopes mentioned earlier.

Additionally, our work provides an encoding technique for performing induction on
multiple arguments in Beluga, as explained on page [40} Finally, being a solution to
the second challenge of the Concurrent Benchmark, it contributes to the achievement
of the objectives set by the challenge authors: specifically, it can serve for the com-
parison of encoding techniques for scope extrusion in different proof environments
and it can lay the groundwork for future projects in this field.

4.2 Related and Future Work

Several works offer formalizations of the w-calculus operational semantics with dif-
ferent approaches and techniques. Here, we mention the HOAS encodings of Honsell
et al. [10] and Miller & Tiu [24]. Honsell’s formalization implements LTS seman-
tics for a more comprehensive version of the m-calculus and focuses on encoding
the theory of strong late bisimilarity. Honsell’s approach includes the definition
of auxiliary predicates to encode name freshness at the object level, which allow
reasoning about bisimilarity and dealing with inequality of names for the mismatch
operator. Conversely, Miller & Tiu present a formalization of the 7m-calculus within a
logic that contains the V operator, which is used to encode quantification over fresh
names. Their formalization addresses the use of this quantifier to encode generic

56

4.2. RELATED AND FUTURE WORK

judgements and covers the differences between open and late bisimulation, which
arise from the differences between the V and V operators. Another difference from
Honsell’s work is the encoding of actions: instead of defining two type families for
free and bound actions, Miller & Tiu provide one type with three constructors (for
input, output and 7 actions). We have proved that the two approaches, when re-
stricted to the subset of the m-calculus introduced in the second challenge of the
concurrent benchmark, are equivalent: a formalization of this result is available at
https://github.com/GabrieleCecilia/concurrent-benchmark-solution.

Our formalization takes inspiration from both prior works, particularly Honsell’s
approach to encoding LTS semantics, while developing and proving new results.
Furthermore, we observe that our formalization does not require the deployment of
techniques to encode freshness of names, such as the aforementioned auxiliary pred-
icates or V operator. This is because the calculus defined in the second challenge
of the benchmark does not include the mismatch operator, requires contexts with a
very simple structure, and the challenge does not involve bisimilarity.

In the future, a potential direction of development consists in extending the syn-
tax of processes to include sums, match operator and replication, and adjusting the
semantics rules accordingly. Introducing sums, for example, requires updating the
definitions of the predicates encoding rewritings of processes involved in transitions
or reductions; as a consequence, some theorem proofs become more complicated. As
for replication, the literature does not provide a uniform definition of transition and
congruence axioms (see [23] or |9] for reference), and additional complexity arises
due to the infinite nature of process behaviours. Including the mismatch opera-
tor requires addressing issues related to the encoding of name inequality, which is
typically challenging in LF; while Honsell’s approach offers a viable solution, its
compatibility with Beluga remains to be verified.

Another avenue for improvement lies in the implementation of these results in Har-
poon [6], an interactive prover for Beluga. Employing tactics and automation could
streamline the proof search and enhance understanding of proof strategies.

Lastly, it is worth noting that while the first and second challenges of the Concur-
rent Calculi Formalization Benchmark have been addressed, progress remains to be
made on the third challenge regarding coinduction in the m-calculus.

57

https://github.com/GabrieleCecilia/concurrent-benchmark-solution

Declaration

I declare that I have used ChatGPT solely for the purpose of correcting grammar
and refining text wording in this thesis. Furthermore, I confirm that I have not used
ChatGPT for any other purpose and declare that I wrote this thesis independently,
without any other external assistance, except for the quoted literature.

58

Ringraziamenti

Ringrazio il mio relatore, Alberto Momigliano, che con notevole dedizione, profes-
sionalita, cura e pazienza mi ha orientato e seguito nella stesura di questa tesi. Le
qualita che ha dimostrato in questi mesi, dal punto di vista sia tecnico che umano,
non sono per nulla scontate e meritano sincera riconoscenza.

Ringrazio la mia famiglia, che ¢ sempre stata al mio fianco e in questi anni mi
ha sempre messo nelle condizioni migliori affinché potessi condurre con successo e
serenita il percorso universitario.

Ringrazio i miei amici: Marco, Pietro e Mattia, che sono stati particolarmente
presenti nei momenti di difficolta; Filippo, Franco, Lorenzo e Tullio, a cui devo molti
dei momenti di gioia vissuti in dipartimento; gli amici del coro Capitano Grandi e
della Schola Cantorum, perché insieme abbiamo condiviso molto e insieme siamo
cresciuti.

59

Appendix A

Equivalence between Early and
Late Semantics

In order to formalize equivalence between the two semantics, we first need to encode
the semantics rules in the same environment. While the encodings of names and
processes remain consistent, we add a constructor f_in to the type family f_act to
represent free output actions in the early semantics.

LF f_act: type =
| f_in: names — names — f_act
| f_out: names — names — f_act
| f_tau: f_act

LF b_act: type =
| b_in: names — b_act
| b_out: names — b_act

Figure A.1: Encoding of the set of actions.

Next we define the type families early_fstep and early_bstep, which represent free
and bound transitions in the early semantics, in Figure [A.2]
Compared to the late semantics, we introduced a new constructor efs_in and modi-

fied the constructors efs_com1 and efs_com2. The efs_in constructor represents the

transition x(z).P RN P{y/z} for all inputs y. The efs_com constructors represent

the communication of processes within a parallel composition only when the input
and output names are identical. We observe that the ebs_in constructor represent-
ing bound input transitions cannot be eliminated, since bound input transitions are
needed as premises in the rules introduced by the efs_close constructors.

For uniformity of notation, we modified the name of the fstep and bstep types,
encoding transitions in the late semantics, into late_fstep and late_bstep. The
names of their constructors are adjusted accordingly. This modification does not
alter the meaning of the rules defined in Figure [3.5] We refrain from providing the
new type family definitions for the sake of brevity.

60

LF early_fstep: proc — f_act — proc — type =
| efs_in: early_fstep (p_in X P) (f_in X Y) (P Y)
| efs_out: early_fstep (p_out X Y P) (f_out X Y) P
| efs_parl: early_fstep P A P’ — early_fstep (P p_par Q) A (P’ p_par Q)
| efs_par2: early_fstep Q A Q> — early_fstep (P p_par Q) A (P p_par Q’)
| efs_coml: early_fstep P (f_out X Y) P’ — early_fstep Q (f_in X Y) Q’
— early_fstep (P p_par Q) f_tau (P’ p_par Q°)
| efs_com2: early_fstep P (f_in X Y) P’ — early_fstep Q (f_out X Y) Q’
— early_fstep (P p_par Q) f_tau (P’ p_par Q’)
| efs_res: ({z:names} early_fstep (P z) A (P’ 2z))
— early_fstep (p_res P) A (p_res P’)
| efs_closel: early_bstep P (b_out X) P’ — early_bstep Q (b_in X) Q’
— early_fstep (P p_par Q) f_tau (p_res \z.((P’ z) p_par (Q’ z)))
| efs_close2: early_bstep P (b_in X) P’ — early_bstep Q (b_out X) Q’
— early_fstep (P p_par Q) f_tau (p_res \z.((P’ z) p_par (Q’ z)))

and early bstep: proc — b_act — (names — proc) — type =

| ebs_in: early_bstep (p_in X P) (b_in X) P

| ebs_parl: early_bstep P A P’
— early_bstep (P p_par Q) A \x.((P’ x) p_par Q)

| ebs_par2: early_bstep Q A Q’
— early_bstep (P p_par Q) A \x.(P p_par (Q’ x))

| ebs_res: ({z:names} early_bstep (P z) A (P’ z))
— early_bstep (p_res P) A \x.(p_res \z.(P’ z x))

| ebs_open: ({z:names} early_fstep (P z) (f_out X z) (P’ z))
— early_bstep (p_res P) (b_out X) P’

Figure A.2: Encoding of the early LTS semantics rules.

We prove the equivalence of semantics following Parrow’s approach [16]. Namely, our
objective is to demonstrate that “the T-transitions that can be inferred with the early
semantics are exactly those that can be inferred with the late semantics”. In order
to achieve the result by induction on the depth of the inference of the transitions,
we need some additional lemmas stating that “not only 7-actions but also input and
output actions correspond in the two semantics”, where the correspondence between
input and free input is defined as follows: P M) P’ holds in the early semantics if

z(w

and only if there exist a process P” and a name w such that P @) pr holds in the
late semantics and P’ = P"{y/w}. (%)

We begin with the definition of a type family ex_latebs which encodes the
existence of a late transition such as in the correspondence (x):

LF ex_latebs: proc — names — names — proc — type =
| 1bs: late_bstep P (b_in X) \w.(Q’ w) — eqp Q (Q’ Y)
— ex_latebs P X Y Q
The constructor 1bs asserts that, given two processes P and Q and two names X and
Y, ex_latebs P X Y Q holds if there exists a process abstraction Q’ satisfying the
following conditions: late_bstep P (b_in X) \w.(Q’ w) holds, and Q* Y = Q.

61

We present the proofs of the two lemmas encoding the correspondence between free
input transitions in the early semantics and input transitions in the late semantics.
The finp_earlytolate lemma encodes one implication and the finp_latetoearly
lemma encodes the other implication.

rec finp_earlytolate: (g:ctx) [g - early_fstep P (f_in X Y) QI
— [g F ex_latebs P X Y Q] =
/ total e (finp_earlytolate _ _ _ _ _ e) /
fn e = case e of
| [g F efs_in] = [g F 1lbs lbs_in prefl]
| [g + efs_parl FE1] =
let [g F 1lbs BL1 prefl] = finp_earlytolate [g F FE1] in
[g - 1bs (1bs_parl BL1) prefl]
| [g - efs_par2 FE2] =
let [g F 1bs BL2 prefl] = finp_earlytolate [g - FE2] in
[g - 1bs (1bs_par2 BL2) prefl]
| [g F efs_res \x.FE1[..,x]] = let [g,x:names F 1bs BL1[..,x] prefl]
= finp_earlytolate [g,x:names - FE1[..,x]] in
[g - 1bs (lbs_res \x.BL1[..,x]) prefl]

Proof Verbalization: We assume the hypothesis e, whose type is [g F early_fstep P
(f_in X Y) Q], and conduct case analysis on e.

In case it was obtained through the constructor efs_in, it represents an object
of type [g b early_fstep (p_in X Q) (f_in X Y) (Q Y)]; since the input prefix
p_in X Q is able to perform a late input transition through the constructor 1bs_in
to the process Q, which equals to (Q Y) when applied to Y, we reached the conclusion.
In the other cases, we perform a recursive call on a structurally smaller free input
transition, unfolding the result by stating it was built with the constructor 1bs and
collecting the transition required to conclude immediately. O

rec finp_latetoearly: (g:ctx) {Y:[g - names]} [g ex_latebs P X Y Q]
— [g F early_fstep P (f_in X Y) Q] =
/ total p (finp_latetoearly _ _p _ _ _) /
mlam Y = fn 1 = let [g F 1lbs L prefl] =1 in
case [g F L] of
| [g F lbs_in] = [g F efs_in]
| [g F 1bs_parl BL1] = let [g F FE1] =
finp_latetoearly [g - Y] [g - 1lbs BL1 prefl] in [g F efs_parl FE1]
| [g F 1bs_par2 BL2] = let [g F FE2] =
finp_latetoearly [g - Y] [g - 1lbs BL2 prefl] in [g F efs_par2 FE2]
| [g = 1bs_res \x.BL1[..,x]] =
let [g,x:names + FE1[..,x]] = finp_latetoearly [g,x:names F Y[..]]
[g,x:names F 1lbs (BL1[..,x]) prefl] in [g F efs_res \x.FE1[..,x]]

62

Proof Verbalization: In the statement of this lemma, the input name Y needs to be
passed as an explicit argument: otherwise, Beluga would not be able to reconstruct
it during some further calls of this lemma. After introducing the variables Y and
1, the latter is unfolded using the let keyword, in order to obtain the variable L
denoting the late transition and perform unification of the involved variables. After
these steps, the proof proceeds analogously to the previous lemma. O

The correspondence between the other types of actions is straightforward. We
provide the formalization of the free output case, omitting the description of the
other cases.

rec fout_earlytolate: (g:ctx) [g F early_fstep P (f_out X Y) Q]
— [g F late_fstep P (f_out X Y) Q] =
/ total e (fout_earlytolate
fn e = case e of
| [g F efs_out] = [g F 1lfs_out]
| [g + efs_parl FE1] =
let [g - FL1] = fout_earlytolate [g F FE1] in [g F 1fs_paril FL1]
| [g + efs_par2 FE2] =
let [g F FL2] = fout_earlytolate [g F FE2] in [g F 1fs_par2 FL2]
| [gF efs_res \x.FE1[..,x]] =
let [g,x:names F FL1[..,x]]= fout_earlytolatelg,x:names + FE1[..,x]]
in [g F 1fs_res \x.FL1[..,x]]

3

rec fout_latetoearly: (g:ctx) [g F late_fstep P (f_out X Y) QI
— [g F early_fstep P (f_out X Y) Q] =
/ total 1 (fout_latetoearly _ _ _ _ _ 1)/
fn 1 = case 1 of
| [g F 1lfs_out] = [g F efs_out]
| [g F 1lfs_parl FL1] =
let [g F FE1] = fout_latetoearly [g F FL1] in [g F efs_parl FE1]
| [g + 1fs_par2 FL2] =
let [g F FE2] = fout_latetoearly [g F FL2] in [g F efs_par2 FE2]
| [g F lfs_res \x.FL1[..,x]] =
let [g,x:names F FE1[..,x]]= fout_latetoearlylg,x:names - FL1[..,x]]
in [g F efs_res \x.FE1[..,x]]

3

Figure A.3: Proof of the lemmas regarding correspondence of free output transitions.

Finally, we are ready to state and prove the theorems about equivalence of semantics.
The tau_earlytolate theorem states that any 7-transition in the early semantics
corresponds to a 7T-transition in the late semantics; the tau_latetoearly states the
other implication. We begin with the first theorem; the proof is in Figure [A.4]

Proof Verbalization: We introduce the variable e representing the early 7-transition
and conduct case analysis on its structure. In the efs_par cases, a recursive call
of the tau_earlytolate function is sufficient to conclude; the same holds for the
efs_res case. In the efs_com and efs_close cases, we have some specific early
transitions as hypotheses: by applying the lemmas stated above, we obtain the
corresponding late transitions and conclude. O

63

rec tau_earlytolate: (g:ctx) [g F early_fstep P f_tau Q]
— [g late_fstep P f_tau Q] =
/ total e (tau_earlytolate _ _ _ e) /
fn e = case e of
| [g F efs_parl FE1] =
let [g F FL1] = tau_earlytolate [g F FE1] in [g F 1fs_parl FL1]
| [g F efs_par2 FE2] =
let [g F FL2] = tau_earlytolate [g - FE2] in [g F 1lfs_par2 FL2]
| [g - efs_coml FE1 FE2] =
let [g F FL1] = fout_earlytolate [g F FE1] in
let [g F 1bs BL2 prefl] = finp_earlytolate [g - FE2] in
[g + 1fs_coml FL1 BL2]
| [g - efs_com2 FE1 FE2] =
let [g F 1bs BL1 prefl] = finp_earlytolate [g - FE1] in
let [g F FL2] = fout_earlytolate [g I FE2] in
[g + 1fs_com2 BL1 FL2]
| [g - efs_res \x.FE1[..,x]] =
let [g,x:names - FL1[..,x]] = tau_earlytolate [g,x:names - FE1[..,x]]
in [g F 1fs_res \x.FL1[..,x]]
| [g - efs_closel BE1 BE2] =
let [g F BL1] = bout_earlytolate [g F BE1] in
let [g F BL2] = binp_earlytolate [g F BE2] in
[g F 1fs_closel BL1 BL2]
| [g - efs_close2 BE1 BE2] =
let [g F BL1] = binp_earlytolate [g F BE1] in
let [g F BL2] = bout_earlytolate [g F BE2] in
[g - 1fs_close2 BL1 BL2]

Figure A.4: Proof of the first equivalence theorem.

The proof of the second theorem is provided in Figure [A.5]

Proof Verbalization: The proof has a similar structure to the previous one. We
observe that, in the 1fs_com cases, we need to introduce a typing annotation to the
objects FE1 and FE2 which represent the early free output transitions. This allows
us to assign the name Y to the variable representing the exchanged name in the
process interaction; as a result, we are now able to pass it as an argument to the
finp_latetoearly function and conclude. O

64

rec tau_latetoearly: (g:ctx) [g - late_fstep P f_tau Q]
— [g F early_fstep P f_tau Q] =

/ total 1 (tau_latetoearly _ _ _ 1) /

fn 1 = case 1 of

[g - 1fs_parl FL1] =

let [g = FE1] = tau_latetoearly [g - FL1] in [g F efs_parl FE1]
[g F 1fs_par2 FL2] =

let [g = FE2] = tau_latetoearly [g - FL2] in [g F efs_par2 FE2]
[g - 1fs_coml FL1 BL2] =

let [g FE1]:[g - early_fstep P1 (f_out X Y) Q1] =
fout_latetoearly [g - FL1] in

let [g - FE2] = finp_latetoearly [g F Y] [g F 1lbs BL2 prefl] in
[g - efs_coml FE1 FE2]

[g - 1fs_com2 BL1 FL2] =

let [g F FE2]:[g F early_fstep P2 (f_out X Y) Q2] =
fout_latetoearly [g - FL2] in

let [g = FE1] = finp_latetoearly [g F Y] [g F 1lbs BL1 prefl] in
[g F efs_com2 FE1 FE2]

[g - 1fs_res \x.FL1i[..,x]] =

let [g,x:names + FE1[..,x]] = tau_latetoearly

[g,x:names F FL1i[..,x]] in [g F efs_res \x.FE1[..,x]]

[g - 1fs_closel BL1 BL2] =

let [g F BE1] = bout_latetoearly [g F BL1] in

let [g F BE2] = binp_latetoearly [g F BL2] in

[g - efs_closel BE1 BE2]

[g F 1fs_close2 BL1 BL2] =

let [g F BE1] = binp_latetoearly [g F BL1] in

let [g - BE2] = bout_latetoearly [g - BL2] in

[g F efs_close2 BE1l BE2]

Figure A.5: Proof of the second equivalence theorem.

65

Appendix B

Proof of Lemma 2.6

Lemma . If P=Q and P 5 P', then there exists a process Q' such that
Q5 Q and P =Q .

Proof. Let P = (). As previously explained on page 21} we proceed by induction
on the structure of P = Q; for each case, we first assume P < P’ aiming to obtain
a transition of the process @, and then we assume @ — (@, aiming to obtain a
transition of P.

K P o
Soe il

Figure B.1: Graphical representation of Lemma statement.

e PAR-UNIT: we have P |0 = P.

First, let P | 0 & P’. By inversion on this transition, we deduce it was
obtained through the application of a S-PAR-L rule: all other rules would imply
that the process 0 is involved in some transition, leading to a contradiction.
Thus, the transition can be rewritten as P | 0 = @ | 0, and we obtain that
P % Q. Since Q | 0 = @, this concludes the argument.

Conversely, if we assume that P = P’, we can derive that P | 0 = P’ | 0
using the S-PAR-L rule, and conclude by observing that P’ | 0 = P'.

e ParR-CoMmMm: we have P | Q =Q | P.
First, let P | Q = R (T1) and perform inversion on this transition. We have

the following subcases:

— S-PAR-L: (T1) can be rewritten as P | @ = R | Q, and we have that
P % R and bn(a) N fn(Q) = 0.
By S-Par-R we obtain Q | P % Q | R, and since P | Q = Q | P we
achieved our goal.

— S-PARr-R: analogous to the previous case.

66

— S-Com-L: (T1) can be rewritten as P | Q = P'| @', with P 2 P’ and
0 z(y) Q.
By S-CoM-R we obtain Q | P = Q' | P', and since P’ | Q' = Q' | P’ we
achieved our goal.

— S-CoMm-R: analogous to the previous case.

— S-CrosE-L: (T1) can be rewritten as P | Q@ = (v2)(P' | Q'), with
P2 pr QX o and » ¢ in(Q).
By S-CLOSE-R we obtain Q | P % (v2)(Q' | P), and since
(vz)(P'| Q') = (v2)(Q' | P') we achieved our goal.

— S-CLose-R: analogous to the previous case.
Conversely, if we assume that Q | P % R we can conclude analogously.

e Par-Assoc: we have P | (Q | R) = (P | Q) | R.

First, let P | (Q | R) % S, denoted as (T1). We perform inversion on this
transition, obtaining the following subcases:

— S-Par-L: (T1) can be rewritten as P | (Q | R) = P'| (Q | R), and we
have that P = P’ and bn(a) N fn(Q | R) = 0.
Since fn(Q | R) = fn(Q) U fn(R) and disjunction is distributive over union,
we obtain that both bn(a) N fn(Q) = 0 and bn(a) N fn(R) = (. Thus, we
can apply a first S-PAR-L rule to obtain that P | @ = P’ | Q, and we can
apply a second S-Par-L rule to obtain that (P | Q) | R = (P’ | Q) | R.
The latter process is congruent to P’ | (Q | R) via Par-Assoc, hence
achieving our goal.

— S-Par-R: (T1) can be rewritten as P | (Q | R) < P | S, and we have
that (Q | R) = S” and bn(a) N fn(P) = (). We perform inversion on the
transition (Q | R) = S’, obtaining different subcases.

% S-PAR-L: (T1) can be rewritten as P | (Q | R) = P | (Q' | R), and
we have that @ = Q" and bn(a) N fn(R) = 0.
We can apply a S-Par-R rule to obtain P | @ % P | Q'; then, we
apply a S-Par-L rule to obtain (P | Q) | R = (P | Q') | R. The
latter process is congruent to P | (@' | R) via Par-Assoc, hence
achieving our goal.

* S-PaR-R: (T1) can be rewritten as P | (Q | R) = P | (Q | R'), and
we have that R = R’ and bn(a) N fn(Q) = 0.
Since bn(a) N (P | Q) = (), we can apply a single S-PAR-R rule
and obtain that (P | Q) | R = (P | Q) | R". The latter process is
congruent to P | (Q | R’) via PArR-Assoc, hence achieving our goal.

¥ S-Com-L: (T1) can be rewritten as P | (Q | R) = P | (Q' | R'), and
we have that Q =% @’ and R =), R.
By applying a S-PAR-R rule we obtain that P | Q =5 P | Q'; then we
apply a S-Com-L rule and obtain that (P | Q) | R = (P | Q') | R'.
The latter process is congruent to P | (@' | R') via PAR-Assoc, hence
achieving our goal.

* S-CowMm-R: analogous to the previous case.

67

% S-CLOSE-L: previously proved on page [22
* S-CLose-R: (T1) is rewritten as P | (Q | R) = P | (v2)(Q' | R))),

and we have that z ¢ fn(Q), Q@ =), Q' and R —) R.
Through a S-PaR-R rule we obtain that P | Q — P | Q. Then,

since R 2 R', through Lemma ﬁ we obtain that z € bn(R); for
the variable convention we can assume that the bound name z is
not free in P | Q. Thus, through a S-CLoOSE-R rule we obtain that
(P|Q)| RS (v2)((P | Q)| R). Finally, we conclude analogously
to the previous case.

— S-Cowm-L: (T1) can be rewritten as P | (Q | R) = P’ | S', and we have
that P <% P’ and QR =), S’. We perform inversion on the transition
QR W, g obtaining two subcases:

* S-PAr-L: (T1) can be rewritten as P | (Q | R) = P' | (@' | R), and

we have that) KON Q'

By S-Cowm-L we obtain that P | Q = P’ | Q'; by S-PAR-L we obtain
that (P | Q)| R = (P'| @) | R. The latter process is congruent to
the process P’ | (Q' | R) via PAR-Assoc, hence achieving our goal.

x S-PAr-R: (T1) can be rewritten as P | (Q | R) = P'| (Q | R'), and

we have that R “Ys R/,)

By S-PAR-L we obtain that P | Q@ =% P’ | Q; by S-Com-L we obtain
that (P | Q)| R = (P'| Q) | R". The latter process is congruent to
the process P’ | (Q | R') via PAR-Assoc, hence achieving our goal.

— S-CoM-R: (T1) can be rewritten as P | (Q | R) = P' | S’, and we have

that P 2% P and Q | R 2% 9.

As in the previous case, by inversion we have that the transition

Q| R 2B, ¢/ can be obtained either through S-PAR-L or S-PAR-R; by
replacing S-CoM-L with S-CoM-R in the former argument, we come to
the conclusion.

— S-Crose-L: (T1) can be rewritten as P | (Q | R) = (vz)(P'| S’), and we

havethatPLP’ Q|R—>S’andz§éfn(Q|R}

Since z ¢ fn(Q | R) we obtain that both z Q:‘ fn(Q) and z ¢ fn(R). We
perform inversion on the transition @ | R X% S’ obtaining two subcases:
% S-PAR-L: (T1) can be rewrltten as P|(Q|R) > (v2)(P' | (Q'| R)),

and we have that Q) 26, Q.
Since z ¢ fn(Q) we can apply the S-CLOSE-L rule and obtain that
P|lQ 5 (v2)(P'| Q); by S-Par-L we obtain that
(P1Q)IR= ((w2)(P' Q)| R
As in the former case S-CLOSE-L proved on page [22] we obtain that
the latter process is congruent to the process (vz)(P' | (@' | R)) by
applying a combination of Sc-ExT-PAR, C-REs and monoid axioms
for parallel composition.

* S-PAR-R: (T1) can be rewritten as P | (Q | R) = (v2)(P'| (Q | R')),

z(z)

and we have that R —> R'.

68

Since z ¢ fn(Q) we can apply the S-Par-L rule and obtain that

PlQ 20, pr | Q; since z ¢ fn(R) we can apply the S-CLOSE-L rule
and obtain that (P | Q) | R = (v2)((P'| Q) | R').

We conclude by observing that the latter process is congruent to the
process (vz)(P' | (Q | R')) through the application of a PAR-Assoc
rule followed by a C-REs rule.

— S-CLosE-R: (T1) can be rewritten as P | (Q | R) = (vz)(P' | S"), and we

have that P~ P,Q|R 2, 67 and » ¢ fn(P). We perform inversion

on the transition @ | R RGNy obtaining two subcases:
* S-PaR-L: (T1) can be rewritten as P | (Q | R) = (v2)(P'| (Q' | R)),

and we have that @ e, Q' and z ¢ fn(R).

Through S-CLOSE-R we obtain that P | Q@ = (v2)(P' | Q'). Through
S-PaRr-L we obtain that (P | Q) | R = (v2)(P' | Q') | R.

As in the former case S-CLOSE-L proved on page 22] since z ¢ fn(R)
we obtain that the process (vz)(P' | Q') | R is congruent to the
process (vz)(P' | (Q' | R)) through a combination of Sc-EXT-PAR,
C-REs and monoid rules for parallel composition.

* S-PaR-R: (T1) can be rewritten as P | (Q | R) = (v2)(P'| (Q | R))),
and we have that R %2 R’ and 2 ¢ fn(Q).

Through S-PAR-L we obtain that P | @), pr | Q.

Since z ¢ fn(P) and z ¢ fn(Q), through S-CLosE-R we obtain that
(P1Q)| RS (v2)((P'] Q)| R'). The latter process is congruent
to the process (vz)(P' | (Q | R')) through the application of a PAR-
Assoc rule followed by a C-REs rule.

Conversely, if we assume that (P | Q) | R < S we can conclude analogously.

e Sc-EXT-ZERO: we have (vx)0 = 0. Since both processes do not undergo any
transition, there is nothing to prove.

e SC-EXT-PAR: we have (vz)P | Q = (vz)(P | Q), with = ¢ fn(Q).

First, let (vz)P | Q@ < R, denoted as (T1). We perform inversion on this
transition, obtaining the following subcases.

— S-PAR-L: (T1) can be rewritten as (vz)P | @ = S | @, and we have
that (vx)P < S and bn(a) N fn(Q) = 0. By inversion on the transition
(vo)P = S we obtain two subcases:

* S-REs: (T1) can be rewritten as (vz)P | Q = (vz)P'| Q, and we
have that = ¢ n(a) and P % P’
Since bn(a) N fn(Q) = @ we can apply a S-PARr-L rule and obtain
that P | Q % P’ | Q. Since = ¢ n(a) we can apply a S-REs rule and
obtain that (vz)(P | Q) % (vx)(P' | Q). Finally we observe that,
since x ¢ fn(Q), we can say that the latter process is congruent to
the process (vx)P' | @ via Sc-EXT-PAR, hence achieving our goal.

* S-OPEN: (T1) can be rewritten as (va)P | Q LGNS | @, and we

have that P 25 S and z # v.

69

Through S-PaAr-L we get that P |) — LN | Q; since x # y we can

apply a S-OPEN rule and obtain that (vz)(P | Q) £ S | @, hence
achieving our goal.

— S-PaRr-R: previously proved on page 22

z(w)

— S-CoMm-L: we have a = 7, (vx)P 2 S and Q 225 Q. By inversion on
the first of these transitions through a S-REs rule we deduce that (T1) can
be rewritten as (vx)P | Q@ = (va)P' | Q" and we obtain that z # 2z, w

and P =% P'.

Through S-Com-L we obtain that P | Q@ = P’ | @', and through S-REs
we obtain that (v2)(P | Q) = (va)(P'| Q). Since Q), Q' x ¢ in(Q)
and r # z,w, through Lemma we obtain that z ¢ fn(Q’); hence,

we conclude by observing that (vx)P’ | Q' is congruent to (vz)(P' | Q')
through a Sc-ExT-PAR rule.

— S-CowMm-R: analogous to the previous case.

— S-Crose-L: (T1) can be rewritten as (vr)P | Q = (vw)(S | @), and we

have that (vz)P —> S, Q== Q and w ¢ fn(Q). By inversion on the
transition (u:c)P — S we have two subcases.
* S-Res: (T1) can be rewritten as (vz)P | Q = (vw)((va)P' | Q'),

and we have that x # z,w and P 2w pr

Through S-CLOSE-L we obtain that P | Q@ = (vw)(P' | Q') and
through S-REs we have that (vz)(P | Q) = (vz)((vw)(P' | Q")).

Since @ N Q' v ¢ fn(Q) and x # z,w, through Lemma we
obtain that x ¢ fn(Q'); thus, we can apply a Sc-EXT-PAR rule to
deduce that (vx)P' | Q' is congruent to (vx)(P' | Q).

Through a C-REs rule we obtain that (vw)((vz)P' | Q') is con-
gruent to (vw)((vx)(P' | @')); the latter process is congruent to
(vz)((vw)(P' | Q')) via Sc-ExT-RES, hence achieving our goal.

* S-OpeN: (T1) can be rewritten as (va)P | Q = (vx)(P' | Q'), and
we have that z # z and P =5 P’
First, we apply a S-Com-L rule to obtain that P | Q = P’ | Q'; then,
through S-REs we obtain that (vz)(P | Q) = (vx)(P' | Q). Since
there are no congruences to show, we reached the conclusion.

S, Q2 @ and w ¢ fn((va) P).
By inversion on the transition (vz)P NS through a S-REs rule we
obtain that (T1) is rewritten as (vr)P | Q = (vw)((ve)P'| Q'), and we
have that = # z,w and P == Wl pr.

Since w ¢ fn((vx)P) and z # w we have that w ¢ fn(P); so we can
apply a S-CLOSE-R rule and obtain that P | Q = (vw)(P’ | Q'). Finally
we conclude analogously to the S-REs subcase of the previous case (first
applying S-REs, then applying the same congruence rules).

z(w)

— S-CLoSE-R: we have o = 7, (vz)P

Conversely, let (vz)(P | Q) < R, denoted as (T2). By inversion on this
transition we obtain two subcases:

70

— S-REs: we have that = ¢ n(a) and P | Q < S. We perform inversion on
this transition, obtaining the following subcases.

* S-PaR-L: (T2) can be rewritten as (vz)(P | Q) = (vz)(P' | Q), and
we have that P = P’ and bn(a) N fn(Q) = 0.
Through S-RES we obtain that (vz)P < (va)P'; through S-PAR-
L we obtain that (vx)P | Q@ = (vx)P' | Q. The latter process is
congruent to the process (vx)(P' | Q) through a Sc-EXT-PAR rule.

* S-PaAR-R: (T2) can be rewritten as (vz)(P | Q) = (vx)(P | Q'), and
we have that @ = Q" and bn(a) N fn(P) = (.
Since fn((vz)P) C fn(P), we have that bn(«) N fn((vz)P) = 0; thus,
through a S-PAR-R rule we obtain that (vz)P | Q@ < (vz)P | Q.
Since @ = Q', x ¢ fn(Q) and = ¢ n(a), through Lemma [2.4] we
obtain that = ¢ fn(Q’); hence, we obtain that the process (vz)P | Q'
is congruent to the process (vz)(P | Q') through a Sc-EXT-PAR rule.

% S-CoM-L: previously proved on page
* S-CoM-R: (T2) can be rewritten as (vz)(P | Q) = (va)(P' | Q'),

and we have that P 2% P’ and Q= Q.

Since Q@ =% ', by applying Lemma we have that both z and w
belong to fn(Q); however, by hypothesis = ¢ fn(Q), thus we conclude
that © # z,w. As a result, we can apply the S-REs rule to obtain the
transition (vz)P N (vz)P'. Then, through a S-CoM-R we obtain
that (vz)P | Q = (v)P' | Q'

Since Q@ =% @', v ¢ fn(Q) and x # z,w, through Lemma we
deduce that = ¢ fn(Q’); hence, through a Sc-EXT-PAR rule we obtain
that the process (vx)P’ | Q' is congruent to the process (vz)(P' | Q).

% S-CLOSE-L: previously proved on page [23|

¥ S-Crose-R: (T2) is rewritten as (vx)(P | Q) = (vz)((vw)(P' | Q")),

and we have that P 2% P/, @ 2% ' and w ¢ fn(P).

Since @ 2, @', by applying Lemma we have that z € fn(Q)
and w € bn(Q). By hypothesis z ¢ fn(Q), hence = # z. Analogously
to the previous case, since w is bound in @ and the restriction (vz)
in the process ((vz)(P | Q)) is outermost, we can assume that x and
w are different up to a-renaming. For this reason, we can proceed
as in the previous case, replacing S-CLOSE-L with S-CLOSE-R in the
former argument.

— S-OPEN: previously proved on page [23|

e Sc-ExT-REs: we have (vz)(vy)P = (vy)(ve)P.
First, let (vz)(ry)P < @Q, denoted as (T1). We perform inversion on this
transition, obtaining the following subcases.
— S-REs: we have (vy)P < @' and x ¢ n(a). By inversion on this transition
we obtain two subcases:

x S-REs: (T1) can be rewritten as (vz)(vy)P = (vz)(vy)P’, and we
have P % P’ and y ¢ n(a).

71

Through S-REs we obtain that (vz)P < (vz)P’; through S-REs we
obtain that (vy)(vz)P % (vy)(vx)P'. The latter process is congru-
ent to the process (vz)(vy)P’ through Sc-EXT-RES.

* S-OPEN: (T1) can be rewritten as (vz)(vy)P 2w, (vx)P', and we

have P 2% P’ and y # 2; since z ¢ n(«), we also have = # y, 2.
Through S-REs we obtain that (vz)P 2% (vx)P’; through S-OpPEN

we obtain that (vy)(vz)P 2, (vx)P', hence achieving our goal.

— S-OPEN: we have o = 2(z), (vy)P 2% Q and = # z. By inversion on this
transition through S-REs we obtain that y # x, 2 and P =% P’. (T1) can
be rewritten as (vz)(vy)P 2@, (vy)P'.

z(x)

Through S-OPEN we obtain that (vz)P — P’; through S-RES we obtain

that (vy)(vx)P 2@, (vy)P', hence achieving our goal.

Conversely, if we assume that (vy)(vz)P = Q we can conclude analogously.

C-In: we have z(z).P = 2(2).Q, given that P = Q.
First, let #(z).P < P’. By inversion through S-IN we obtain that o = z(y) and

P" = P{y/z}. Through S-IN we obtain the transition z(z).Q W), Q{y/z};
since P = @, we also have that P{y/z} = Q{y/z}, hence achieving our goal.

Conversely, if we assume that z(2).Q < Q" we can conclude analogously.

C-OuT: we have zy.P = zy.Q), given that P = Q).

First, let Zy.P = P’. By inversion through S-OuT we obtain that a = zy
and P’ = P. Through S-OUT we obtain that Zy.Q =% Q: since P = Q by
hypothesis, we reached the conclusion.

Conversely, if we assume that Zy.QQ = @’ we can conclude analogously.

C-PAR: we have P | Q = P’ | @, given that P = P'.

First, let P | Q < R, denoted as (T1). We perform inversion on this transition,
obtaining the following subcases.

— S-PAR-L: (T1) can be rewritten as P | Q@ = S | @, and we have P % S
and bn(a) N fn(Q) = 0.
By applying the inductive hypothesis on the set {P = P', P = S} we
obtain that P/ % S and S = S’. Through S-PAR-L we obtain that
P | Q% S| Q. We conclude by observing that the process S | @ is
congruent to the process S’ | Q through C-PaR.

— S-PAR-R: previously proved on page |24}

— S-Cowm-L: (T1) can be rewritten as P | Q@ = S | @', and we have that
P S and Q), Q'
By applying the inductive hypothesis on the set {P = P, P 24 S} we
obtain that P’ &% S’ and S = S’. Through S-Com-L we obtain that

P'|Q 5 S| Q. The process S | Q' is congruent to the process S’ | Q'
through C-PAR, hence achieving our goal.

72

— S-Cowm-R: analogous to the previous case.

— S-CLosE-L: (T1) can be rewritten as P | Q@ = (v2)(S | Q'), and we have
that P 2% 5. Q 22 ¢ and » ¢ fn(Q).
By applying the inductive hypothesis on the set {P = P’, P RGNS } we

obtain that P’ 2% §" and § = §'. Through S-Crosg-L we obtain that
PQ S (v2)(S' | Q)

Since S = 5’ through C-PAR we obtain that S | Q' = S’ | @’; finally,
through C-RES we obtain that (v2)(S | Q') = (v2)(S’ | @), thus reaching

the conclusion.

— S-CrosE-R: (T1) can be rewritten as P | Q = (v2)(S | Q'), and we have
that P ﬁ S, Q ﬂ Q' and z ¢ fn(P).
By applying the inductive hypothesis on the set {P = P’, P), g } we

obtain that 2“2 &' and S = . Since P = P’ and = ¢ fn(P), through
Lemma we obtain that z ¢ fn(P’). Thus, through S-CLOSE-R we
obtain that P' | Q = (v2)(S" | Q).

Since S = 5’ through C-PAR we obtain that S | Q' = S’ | @’; finally,
through C-RES we obtain that (v2)(S | Q') = (v2)(S" | @), thus reaching
the conclusion.

Conversely, if we assume that P’ | Q < R we can conclude analogously.

e C-REs: we have (vz)P = (vz)Q, given that P = Q).
First, let (vo)P < R, denoted as (T1). We perform inversion on this transi-

tion, obtaining the following subcases.

— S-REs: (T1) can be rewritten as (vz)P < (vx)P’, and we have P % P’
and z ¢ n(«).
By applying the inductive hypothesis on the set {P = Q, P = P'}
we obtain that Q@ = Q' and P’ = @Q'. Through S-REs we obtain that
(vr)Q = (va)Q'. Since P’ = ', the process (vx)Q' is congruent to the
process (vz) P’ through C-REs.

— S-OpeN: (T1) can be rewritten as (vx)P iGN R, and we have P =% R
and z # x.

By applying the inductive hypothesis on the set {P = @, P LN R}
we obtain that Q@ =% S and R = S. Through S-OPEN we obtain that
(vz)Q @, g , and since R = S we achieved our goal.

Conversely, if we assume that (vz)Q < S we can conclude analogously.
e C-REF: we have P = P; the proof is immediate.
e C-SyMm: the conclusion holds automatically because of the initial remark.

e C-TRrANS: we have P = R, given that P = @ and) = R.

First, assume P = P’. By applying the inductive hypothesis on the set
{P=Q, P> P'} we obtain that @ = Q" and P’ = . By applying the

73

inductive hypothesis on the set {Q = R, Q@ = @'} we obtain that R = R’

and Q' = R'. Through C-TrANs we obtain that P* — R/, hence reaching the
conclusion.

Conversely, if we assume that R = R’ we can conclude analogously.

74

Appendix C

Formalization of Lemma 2.6

Proof of the Strengthening Lemma

rec strengthen_fstep: (g:ctx) {F:[g,x:names F fstep P[..] A Ql}
— ex_str_fstep [g,x:names F F] =
/ total f (strengthen_fstep _ _ _ _ f) /
mlam F = case [_,x:names - F] of
| [g,x:names F fs_out] = ex_fstep [g,x:names F F] [g I fs_out]
[g,x:names - frefl] [g,x:names I prefl]
| [g,x:names F fs_parl Fi[..,x]] =
let ex_fstep [g,x:names - F1[..,x]] [g F F1’] el e2
= strengthen_fstep [g,x:names - F1[..,x]] in
let [g,x:names F frefl] = el in
let [g,x:names F prefl] = e2 in
ex_fstep [g,x:names - fs_parl F1[..,x]] [g F fs_parl F1’]
[g,x:names - frefl] [g,x:names + prefl]
| [g,x:names F fs_par2 F2[..,x]] =
let ex_fstep [g,x:names F F2[..,x]] [g F F2’] el e2
= strengthen_fstep [g,x:names + F2[..,x]] in
let [g,x:names F frefl] = el in
let [g,x:names F prefl] = e2 in
ex_fstep [g,x:names - fs_par2 F2[..,x]] [g F fs_par2 F2’]
[g,x:names - frefl] [g,x:names k- prefl]
| [g,x:names + fs_coml F1[..,x] B1i[..,x]] =
let ex_fstep [g,x:names F F1[..,x]] [g F F1’] el e2
= strengthen_fstep [g,x:names - F1[..,x]] in
let [g,x:names F frefl] = el in
let [g,x:names F prefl] = e2 in
let ex_bstep [g,x:names F Bi[..,x]] [g F B1’] el’ e2’
= strengthen_bstep [g,x:names + B1[..,x]] in
let [g,x:names F brefl] = el’ in
let [g,x:names,z:names - prefl] = e2’ in
ex_fstep [g,x:names + fs_coml F1[..,x] B1i[..,x]]
[g - fs_coml F1’ B1’] [g,x:names F frefl] [g,x:names - prefl]
| [g,x:names + fs_com2 B1[..,x] Fi[..,x]] =
let ex_fstep [g,x:names F F1[..,x]] [g F F1’] el e2
= strengthen_fstep [g,x:names - F1[..,x]] in
let [g,x:names - frefl] = el in
let [g,x:names F prefl] = e2 in

75

let ex_bstep [g,x:names ~ B1[..,x]] [g - B1’] el’ e2’
= strengthen_bstep [g,x:names F B1[..,x]] in
let [g,x:names F brefl] = el’ in
let [g,x:names,z:names - prefl] = e2’ in
ex_fstep [g,x:names - fs_com2 B1i[..,x] F1[..,x]]
[g - fs_com2 B1’ F1’] [g,x:names F frefl] [g,x:names - prefl]
[g,x:names - fs_res \y.F1[..,y,x]1] =
let ex_fstep [g,y:names,x:names F F1[..,y,x]] [g,y:names - F1°[..,y]]
el e2 = strengthen_fstep [g,y:names,x:names F F1[..,y,x]] in
let [g,y:names,x:names - frefl] = el in
let [g,y:names,x:names F prefl] = e2 in
ex_fstep [g,x:names F fs_res \y.Fi[..,y,x]]
[g - fs_res \y.F1’[..,y]] [g,x:names F frefl] [g,x:names F prefl]
| [g,x:names - fs_closel B1i[..,x] B2[..,x]] =
let ex_bstep [g,x:names F B1i[..,x]] [g F B1’] el e2
= strengthen_bstep [g,x:names F B1[..,x]] in
let [g,x:names + brefl] = el in
let [g,x:names,z:names - prefl] = e2 in
let ex_bstep [g,x:names - B2[..,x]] [g - B2’] el’ e2’
= strengthen_bstep [g,x:names F B2[..,x]] in
let [g,x:names F brefl] = el’ in
let [g,x:names,z:names F prefl] = e2’ in
ex_fstep [g,x:names F fs_closel Bi[..,x] B2[..,x]]
[g - fs_closel B1’ B2’] [g,x:names F frefl] [g,x:names F prefl]
| [g,x:names - fs_close2 B1[..,x] B2[..,x]] =
let ex_bstep [g,x:names F B1[..,x]] [g F B1’] el e2
= strengthen_bstep [g,x:names F B1[..,x]] in
let [g,x:names F brefl] = el in
let [g,x:names,z:names - prefl] = e2 in
let ex_bstep [g,x:names + B2[..,x]] [g - B2’] el’ e2’
= strengthen_bstep [g,x:names - B2[..,x]] in
let [g,x:names F brefl] = el’ in
let [g,x:names,z:names F prefl] = e2’ in
ex_fstep [g,x:names - fs_close2 B1[..,x] B2[..,x]]
[g - fs_close2 B1’ B2’] [g,x:names F frefl] [g,x:names F prefl]

and rec strengthen_ bstep: (g:ctx) {B:[g,x:names I bstep P[..] A
\z.Q[..,x,2z]1} — ex_str_bstep [g,x:names F B] =
/ total b (strengthen_bstep _ _ _ _ b) /
mlam B = case [_,x:names F B] of
| [g,x:names F bs_in] = ex_bstep [g,x:names F B] [g F bs_in]
[g,x:names + brefl] [g,x:names,z:names + prefl]
| [g,x:names F bs_parl Bi[..,x]] =
let ex_bstep [g,x:names ~ B1[..,x]] [g F B1’] el e2
= strengthen_bstep [g,x:names ~ B1[..,x]] in
let [g,x:names F brefl] = el in
let [g,x:names,z:names - prefl] = e2 in
ex_bstep [g,x:names - bs_parl Bi[..,x]] [g F bs_parl B1’]
[g,x:names + brefl] [g,x:names,z:names F prefl]
| [g,x:names F bs_par2 B2[..,x]] =

let ex_bstep [g,x:names F B2[..,x]] [g F B2’] el e2

76

= strengthen_bstep [g,x:names ~ B2[..,x]] in

let [g,x:names F brefl] = el in

let [g,x:names,z:names - prefl] = e2 in
ex_bstep [g,x:names bs_par2 B2[..,x]] [g F bs_par2 B2’]
[g,x:names F brefl] [g,x:names,z:names F prefl]

| [g,x:names F bs_res \y.Bi[..,y,x]] =

let ex_bstep [g,y:names,x:names - Bi[..,y,x]] [g,y:names F B1’[..,y]l]
el e2 = strengthen_bstep [g,y:names,x:names - Bi[..,y,x]] in

let [g,y:names,x:names - brefl] = el in

let [g,y:names,x:names,z:names - prefl] = e2 in
ex_bstep [g,x:names F bs_res \y.Bi[..,y,x]]
[g - bs_res \y.B1’[..,y]] [g,x:names F brefl]
[g,x:names,z:names F prefl]

| [g,x:names ~ bs_open \y.Fi[..,y,x]] =

let ex_fstep [g,y:names,x:names F Fi[..,y,x]] [g,y:names F F1°[..,y]]
el e2 = strengthen_fstep [g,y:names,x:names F Fi[..,y,x]] in

let [g,y:names,x:names - frefl] = el in

let [g,y:names,x:names F prefl] = e2 in
ex_bstep [g,x:names - bs_open \y.F1i[..,y,x]]
[g F bs_open \y.F1’[..,y]] [g,x:names - brefl]
[g,x:names,z:names F prefl]

Proof of Lemma 2.6

rec cong_fstepleft_impl_fstepright: (g:ctx) [g - P cong QI
— [g F fstep P A P’] — [g F ex_fstepcong P Q A P’] =
/ total c (cong_fstepleft_impl_fstepright _ _ _ _ _ c _)/
fn ¢ = fn f = case c of
| [g F par_unit] = let [g F fs_parl F1] = f in [g fsc F1 par_unit]
| [g + par_comm] =
(case f of

| [g - fs_parl F1] = [g F fsc (fs_par2 F1) par_comm]
| [g - fs_par2 F2] = [g F fsc (fs_parl F2) par_comm]
| [gF fs_coml F1 B1] = [g F fsc (fs_com2 Bl F1) par_comm]
| [g - fs_com2 Bl F1] = [g I fsc (fs_coml F1 B1l) par_comm]
| [g+ fs_closel B1 B2] =

[g - fsc (fs_close2 B2 B1) (c_res \x.par_comm)]
| [g - fs_close2 Bl B2] =

[g F fsc (fs_closel B2 B1) (c_res \x.par_comm)]

)
| [g + par_assoc] =
(case f of
| [gF fs_parl F] = [g - fsc (fs_parl (fs_parl F)) par_assoc]
| [g - fs_par2 F] =
(case [g F F] of
| [g - fs_parl F’] =
[g - fsc (fs_parl (fs_par2 F’)) par_assoc]
| [g - fs_par2 F’] = [g - fsc (fs_par2 F’) par_assoc]
| [g + fs_coml F’ B] =
[g - fsc (fs_coml (fs_par2 F’) B) par_assoc]

7

| [g - fs_com2 B F’] =
[g - fsc (fs_com2 (bs_par2 B) F’) par_assoc]
%l [g = fs_closel Bl B2] = previously proved in section 3.3.2
| [g F fs_close2 Bl B2] =
[g F fsc (fs_close2 (bs_par2 B1l) B2) (c_trans
par_comm (c_trans sc_ext_par (c_trans (c_res
\x.par_comm) (c_res \x.par_assoc))))]
)
| [g - fs_coml F B] =
(case [g F B] of
| [g - bs_parl B’] =
[g - fsc (fs_parl (fs_coml F B’)) par_assoc]
| [g - bs_par2 B’] =
[g - fsc (fs_coml (fs_parl F) B’) par_assoc]
)
| [g+ fs_com2 B F] =
(case [g F F] of
| [g + fs_parl F’] =
[g - fsc (fs_parl (fs_com2 B F’)) par_assoc]
| [g F fs_par2 F’] =
[g - fsc (fs_com2 (bs_parl B) F’) par_assoc]
)
| [g F fs_closel Bl B2] =
(case [g F B2] of
| [g F bs_parl B2’] =
[g - fsc (fs_parl (fs_closel Bl B2’))
(c_trans (c_res \x.par_assoc) (c_sym sc_ext_par))]
| [g - bs_par2 B2’] =
[g F fsc (fs_closel (bs_parl B1) B2’) (c_res \x.par_assoc)]
)
| [g + fs_close2 B1 B2] =
(case [g F B2] of
| [g - bs_parl B2’] =
[g - fsc (fs_parl (fs_close2 B1 B2’))
(c_trans (c_res \x.par_assoc) (c_sym sc_ext_par))]
| [g F bs_par2 B2’] =
[g - fsc (fs_close2 (bs_parl B1l) B2’) (c_res \x.par_assoc)]

)
| [g - sc_ext_zero]l =
let [g F fs_res \x.F[..,x]] = f in impossible [g, x:names F F[..,x]]
| [g F sc_ext_par] =
(case f of
| [g + fs_parl F1] =
let [g - fs_res \x.F1’[..,x]] = [g F F1] in
[g - fsc (fs_res \x.(fs_parl F1’[..,x])) sc_ext_par]
%l [g - fs_par2 F2] = previously proved in section 3.3.2
| [g - fs_coml F1 B1l] =
let [g - fs_res \x.F1’[..,x]] = [g = F1] in
[g - fsc (fs_res \x.(fs_coml F1’[..,x] B1[..])) sc_ext_par]
| [g + fs_com2 Bl F1] =

78

let [g F bs_res \x.B1’[..,x]] = [g F B1] in
[g - fsc (fs_res \x.(fs_com2 B1’[..,x] F1[..])) sc_ext_par]
| [g F fs_closel Bl B2] =
(case [g F B1] of
| [g F bs_res \x.B1’[..,x]] =
[g - fsc (fs_res \x.(fs_closel B1’[..,x] B2[..]))
(c_trans (c_res \w.sc_ext_par) sc_ext_res)]
| [g - bs_open \x.F1[..,x]] =
[g - fsc (fs_res \x.(fs_coml F1[..,x] B2[..])) c_ref]
)
| [g - fs_close2 Bl B2] =
let [g F bs_res \x.B1’[..,x]] = [g F B1] in
[g - fsc (fs_res \x.(fs_close2 B1’[..,x] B2[..]1))
(c_trans (c_res \w.sc_ext_par) sc_ext_res)]
)
| [g F sc_ext_res] =
let [g F fs_res \x.F[..,x]] = f in
let [g,x:names +F fs_res \y.F’[..,x,y]] = [g,x:names + F[..,x]] in
[g - fsc (fs_res \y.(fs_res \x.F’[..,x,y])) (sc_ext_res)]
| [g - c_in \x.C1[..,x]] = impossible f
| [g F c_out C1] = let [g+ fs_out] = f in [g - fsc fs_out C1]
| [gF c_par C1] =
(case f of
| [g+ fs_parl F1] =
let [g F fsc F2 C2] = cong_fstepleft_impl_fstepright [g - Ci]
[g - F1] in [g F fsc (fs_parl F2) (c_par C2)]
%l [g - fs_par2 F1] = previously proved in section 3.3.2
| [g - fs_coml F1 B1l] =
let [g F fsc F2 C2] = cong_fstepleft_impl_fstepright [g - C1]
[g - F1] in [g F fsc (fs_coml F2 B1) (c_par C2)]
| [g F fs_com2 Bl F1] =
let [g F bsc B2 \x.C2[..,x]] = cong_bstepleft_impl_bstepright
[g - Cil[g F B1] in [g F fsc(fs_com2 B2 F1) (c_par C2[..,_1)]
| [g F fs_closel Bl B2] =
let [g F bsc B1’ \x.C2[..,x]] =
cong_bstepleft_impl_bstepright [g - C1] [g - B1] in
[g - fsc (fs_closel B1’ B2) (c_res \x.(c_par C2[..,x]))]
| [g - fs_close2 Bl B2] =
let [g F bsc B1’ \x.C2[..,x]] =
cong_bstepleft_impl_bstepright [g - C1] [g F B1l] in
[g - fsc (fs_close2 B1’ B2) (c_res \x.(c_par C2[..,x]))]
)
| [g F c_res \x.C[..,x]] =
let [g F fs_res \x.F[..,x]] = f in
let [g,x:names F fsc F’[..,x] C’[..,x]] =
cong_fstepleft_impl_fstepright [g,x:names + C[..,x]]
[g,x:names F F[..,x]] in
[g - fsc (fs_res \x.F’[..,x]) (c_res \x.C’[..,x])]
| [gF c_ref] = let [ghF F] = f in [g F fsc F c_ref]
%l [g = c_sym C’] = previously proved in section 3.3.2
| [g F c_trans C1 C2] =

79

let [g F fsc F1 C1’] = cong_fstepleft_impl_fstepright [g - C1] f in
let [g - fsc F2 C2’] = cong_fstepleft_impl_fstepright [g - C2]
[g - F1] in [g F fsc F2 (c_trans C1’ C2’)]

and rec cong_fstepright_impl_fstepleft: (g:ctx) [g F P cong Q]
— [g - fstep Q A Q] — [g F ex_fstepcong Q P A Q’] =

/ total c (cong_fstepright_impl_fstepleft

_____ c _)/

fn ¢ = fn f = case c of

[g - par_unit] =

let [g k- F] = f in [g F fsc (fs_parl F) (c_sym par_unit)]
r_comm]

[g - pa

(case f

(g -

(g
(g
(g
(g
(g
(g
(g
(g

T T T T T T T T O

Hh

=

fs_parl F1] = [g - fsc (fs_par2 F1) par_comm]
fs_par2 F2] = [g t fsc (fs_parl F2) par_comm]
fs_coml F1 B1l] = [g F fsc (fs_com2 Bl F1) par_comm]
fs_com2 Bl F1] = [g I fsc (fs_coml F1 B1) par_comm]
fs_closel Bl B2] =

fsc (fs_close2 B2 B1) (c_res \x.par_comm)]

fs_close2 Bl B2] =

fsc (fs_closel B2 B1) (c_res \x.par_comm)]

par_assoc] =
(case f of
[g - fs_parl F] =
(case [g F F] of

)

(g
(g
(g

)

F
l_
}_
I

(g
(g
(g
(g
(g
(g
(g
(g
(g

T T T T T T T T

l_

fs_parl F’] = [g F fsc (fs_parl F’) (c_sym par_assoc)]
fs_par2 F’] =

fsc (fs_par2 (fs_parl F’)) (c_sym par_assoc)]

fs_coml F’ B] =

fsc (fs_coml F’ (bs_parl B)) (c_sym par_assoc)]

fs_com2 B F’] =

fsc (fs_com2 B (fs_parl F’)) (c_sym par_assoc)]
fs_closel Bl B2] =

fsc (fs_closel Bl (bs_parl B2))

(c_trans sc_ext_par (c_res \x.(c_sym par_assoc)))]
[g - fs_close2 Bl B2] =

[g - fsc (fs_close2 Bl (bs_parl B2))

(c_trans sc_ext_par (c_res \x.(c_sym par_assoc)))]

fs_par2 F] =

fsc (fs_par2 (fs_par2 F)) (c_sym par_assoc)]

fs_coml F B] =

(case [g F F] of

[g F fs_parl F’] =

[g - fsc (fs_coml F’ (bs_par2 B)) (c_sym par_assoc)]
[g F fs_par2 F’] =

[g - fsc (fs_par2 (fs_coml F’ B)) (c_sym par_assoc)]

[g - fs_com2 B F] =
(case [g F B] of
[g - bs_parl B’] =

80

[g - fsc (fs_com2 B’ (fs_par2 F)) (c_sym par_assoc)]
| [g F bs_par2 B’] =
[g - fsc (fs_par2 (fs_com2 B’ F)) (c_sym par_assoc)]
)
| [g - fs_closel Bl B2] =
(case [g F B1] of
| [g - bs_parl B1’] =
[g - fsc (fs_closel B1’ (bs_par2 B2))
(c_res \x.(c_sym par_assoc))]
| [g F bs_par2 B1’] =
[g F fsc (fs_par2 (fs_closel B1’ B2))
(c_trans (c_res \x.(c_sym par_assoc)) (c_trans (c_res
\x.par_comm) (c_trans (c_sym sc_ext_par) par_comm)))]
)
| [g F fs_close2 Bl B2] =
(case [g F B1] of
| [g F bs_parl B1’] =
[g - fsc (fs_close2 B1’ (bs_par2 B2))
(c_res \x.(c_sym par_assoc))]
| [g - bs_par2 B1’] =
[g - fsc (fs_par2 (fs_close2 B1’ B2))
(c_trans (c_res \x.(c_sym par_assoc)) (c_trans (c_res
\x.par_comm) (c_trans (c_sym sc_ext_par) par_comm)))]

)
| [g F sc_ext_zero] = impossible f
| [g - sc_ext_par] = let [g F fs_res \x.F[..,x]] = f in
(case [g, x:names F F[..,x]] of
| [g,x:names ~ fs_parl Fi[..,x]] =
[g - fsc (fs_parl (fs_res \x.F1[..,x])) (c_sym sc_ext_par)]
| [g,x:names ~ fs_par2 F2[..,x]] =
let ex_fstep [g,x:names + F2[..,x]] [g F F2’] el e2
strengthen_fstep [g,x:names F F2[..,x]] in
let [g,x:names F frefl] = el in
let [g,x:names F prefl] = e2 in
[g - fsc (fs_par2 F2’) (c_sym sc_ext_par)]
%l [g,x:names F fs_coml Fi[..,x] B1i[..,x]] =
% previously proved in section 3.3.2
| [g,x:names F fs_com2 B1[..,x] Fi[..,x]] =
let ex_fstep [g,x:names - F1[..,x]] [g F F1’] el e2
strengthen_fstep [g,x:names - F1[..,x]] in
let [g,x:names F~ frefl] = el in
let [g,x:names - prefl] = e2 in
[g - fsc (fs_com2 (bs_res \x.B1[..,x]) F1’)
(c_sym sc_ext_par)]
%l [g,x:names F fs_closel B1[..,x] B2[..,x]] =
% previously proved in section 3.3.2
| [g,x:names F fs_close2 B1i[..,x] B2[..,x]] =
let ex_bstep [g,x:names - B2[..,x]] [g F B2’] el e2 =
strengthen_bstep [g,x:names - B2[..,x]] in
let [g,x:names F brefl] = el in

81

let [g,x:names,z:names - prefl] = e2 in
[g - fsc (fs_close2 (bs_res \x.B1i[..,x]) B2’)
(c_trans sc_ext_res (c_res \w.(c_sym sc_ext_par)))]
)
| [g F sc_ext_res] =
let [g F fs_res \x.F[..,x]] = f in
let [g,x:names + fs_res \y.F’[..,x,y]l] = [g,x:names - F[..,x]] in
[g - fsc (fs_res \y.(fs_res \x.F’[..,x,y])) sc_ext_res]
| [gF c_in \x.C1[..,x]] = impossible f
| [g F c_out C1] = let [g F fs_out] = f in [g - fsc fs_out (c_sym C1)]
| [g F c_par C1] =
(case f of
| [g+ fs_parl F1] =
let [g - fsc F2 C2] = cong_fstepright_impl_fstepleft [g F Ci]
[g - F1] in [g F fsc (fs_parl F2) (c_par C2)]
| [gF fs_par2 F1] = [g F fsc (fs_par2 F1) (c_par (c_sym C1))]
| [g - fs_coml F1 B1l] =
let [g F fsc F2 C2] = cong_fstepright_impl_fstepleft [g - C1]
[g - F1] in [g F fsc (fs_coml F2 B1) (c_par C2)]
| [g + fs_com2 Bl F1] =
let [g bsc B2 \x.C2[..,x]] = cong_bstepright_impl_bstepleft
[g F C1lllg F B1] in [g F fsc(fs_com2 B2 F1)(c_par C2[..,_1)]
| [g F fs_closel Bl B2] =
let [g - bsc B1’ \x.C2[..,x]] = cong_bstepright_impl_bstepleft
[g - C1] [g F B1] in
[g - fsc (fs_closel B1’ B2) (c_res \x.(c_par C2[..,x]))]
| [g + fs_close2 Bl B2] =
let [g F bsc B1’ \x.C2[..,x]] = cong_bstepright_impl_bstepleft
[g - C1] [g + B1] in
[g - fsc (fs_close2 B1’ B2) (c_res \x.(c_par C2[..,x]))]
)
| [gF c_res \x.C[..,x]] =
let [g F fs_res \x.F[..,x]] = f in
let [g,x:names + fsc F’[..,x] C’[..,x]] =
cong_fstepright_impl_fstepleft [g,x:names - C[..,x]]
[g,x:names F F[..,x]] in
[g - fsc (fs_res \x.F’[..,x]) (c_res \x.C’[..,x])]
| [gF c_ref] = let [gF F] = £f in [g F fsc F c_ref]
| [gF c_sym C’] =
let [g F D] = cong_fstepleft_impl_fstepright [g - C’] f in [g F DI
| [g - c_trans C1 C2] =
let [g F fsc F1 C2’] = cong_fstepright_impl_fstepleft [g - C2] f in
let [g F fsc F2 C1’] = cong_fstepright_impl_fstepleft [g F C1]
[g - F1] in [g F fsc F2 (c_trans C2’ C1°’)]

and rec cong_bstepleft_impl_bstepright: (g:ctx) [g F P cong Q]
— [g I bstep P A \x.P’[..,x]] — [g I ex_bstepcong P Q A \x.P’[..,x]] =
/ total c (cong_bstepleft_impl_bstepright _ _ _ _ _ c _)/
fn ¢ = fn b = case c of
| [g + par_unit] =
let [g F bs_parl B1] = b in [g F bsc Bl \x.par_unit]

82

| [g F par_comm] =
(case b of
| [g F bs_parl B1] = [g F bsc (bs_par2 B1l) \x.par_comm]
| [g - bs_par2 B2] = [g F bsc (bs_parl B2) \x.par_comm]
)
| [g + par_assoc] =
(case b of
| [g - bs_parl B] = [g - bsc (bs_parl (bs_parl B)) \x.par_assoc]
| [g F bs_par2 B] =
(case [g F B] of
| [g - bs_parl B’] =
[g - bsc (bs_parl (bs_par2 B’)) \x.par_assoc]
| [g F bs_par2 B’] = [g I bsc (bs_par2 B’) \x.par_assoc]
)
)
| [g - sc_ext_zero] =
let [g F bs_res \x.B[..,x]] = b in impossible [g,x:names F B[..,x]]
| [g F sc_ext_par] =
(case b of
| [g - bs_parl Bl] =
(case [g - B1] of
| [g - bs_res \x.B1’[..,x]] =
[g - bsc (bs_res \x.(bs_parl B1’[..,x])) \x.sc_ext_par]
| [g F bs_open \x.F1i[..,x]] =
[g - bsc (bs_open \x.(fs_parl F1[..,x])) \x.c_ref]
)
%l [g - bs_par2 B2] = previously proved in section 3.3.2
)
| [g F sc_ext_res] =
(case b of
| [g F bs_res \x.B[..,x]] =
(case [g,x:names - B[..,x]] of
| [g,x:names F bs_res \y.B’[..,x,yl] =
[g = bsc (bs_res \y.(bs_res \x.B’[..,x,y])) \x.sc_ext_res]
| [g,x:names F bs_open \y.F[..,x,yl] =
[g - bsc (bs_open \y.(fs_res \x.F[..,x,y])) \x.c_ref]
)
| [g - bs_open \x.F[..,x]] =
let [g,x:names F fs_res \y.F’[..,x,y]] = [g,x:names + F[..,x]]
in [g F bsc (bs_res \y.(bs_open \x.F’[..,x,y])) \x.c_ref]
)
| [g F c_in \x.C1[..,x]] =
let [g - bs_in] = b in [g F bsc bs_in \x.C1[..,x]]
| [g F c_out C1] = impossible b
| [g F c_par C1] =
(case b of
| [g F bs_parl B1] =
let [g F bsc B2 \x.C2[..,x]] = cong_bstepleft_impl_bstepright
[g - C1] [g F B1] in [g F bsc (bs_parl B2) \x.(c_par C2[..,x]1)]
%l [g F bs_par2 Bl] = previously proved in section 3.3.2
)

83

| [g F c_res \x.C[..,x]] =
(case b of
| [g F bs_res \x.B[..,x]] =
let [g,x:names F bsc B’[..,x] \y.C’[..,x,y]l] =
cong_bstepleft_impl_bstepright [g,x:names + C[..,x]]
[g,x:names F B[..,x]] in
[g - bsc (bs_res \x.B’[..,x]) \y.(c_res \x.C’[..,x,y])]
| [g - bs_open \x.F[..,x]] =
let [g,x:names F fsc F’[..,x] C’[..,x]] =
cong_fstepleft_impl_fstepright [g,x:names F C[..,x]]
[g,x:names F F[..,x]] in
[g - bsc (bs_open \x.F’[..,x]) \x.C’[..,x]]
)
| [gF c_ref] = let [gF Bl = b in [g F bsc B \x.c_ref]
| [gF c_sym C’] =
let [g F D] = cong_bstepright_impl_bstepleft [g - C’] b in [g F D]
| [g - c_trans C1 C2] =
let [g F bsc Bl \x.C1’[..,x]] =
cong_bstepleft_impl_bstepright [g - C1] b in
let [g F bsc B2 \x.C2’[..,x]] =
cong_bstepleft_impl_bstepright [g F C2] [g - B1] in
[g F bsc B2 \x.(c_trans C1°[..,x] C2°[..,x])]

and rec cong_bstepright_impl_bstepleft: (g:ctx) [g F P cong Q]
— [g - bstep Q A \x.Q’[..,x]] — [g I ex_bstepcong Q P A \x.Q’[..,x]] =
/ total c (cong_bstepright_impl_bstepleft _ _ _ _ _ c _)/
fn ¢ = fn b = case c of
| [g F par_unit] =
let [gF B] = b in [g I bsc (bs_parl B) \x.(c_sym par_unit)]
| [g F par_comm] =
(case b of
| [g F bs_parl B1] = [g F bsc (bs_par2 B1l) \x.par_comm]
| [g F bs_par2 B2] = [g bsc (bs_parl B2) \x.par_comm]
)
| [g F par_assoc] =
(case b of
| [g + bs_parl B] =
(case [g F B] of
| [g F bs_parl B’] =
[g = bsc (bs_parl B’) \x.(c_sym par_assoc)]
| [g F bs_par2 B’] =
[g - bsc (bs_par2 (bs_parl B’)) \x.(c_sym par_assoc)]
)
| [g F bs_par2 B] =
[g - bsc (bs_par2 (bs_par2 B)) \x.(c_sym par_assoc)]
)
| [g F sc_ext_zero] = impossible b
| [g F sc_ext_par] =
(case b of
| [g F bs_res \x.B[..,x]] =

84

(case [g, x:names +F B[..,x]] of
| [g,x:names F bs_parl Bi[..,x]] =
[g - bsc (bs_parl (bs_res \x.B1[..,x]))
\x. (c_sym sc_ext_par)]
| [g,x:names F bs_par2 B2[..,x]] =
let ex_bstep [g,x:names F B2[..,x]] [g - B2’] el e2 =
strengthen_bstep [g,x:names F B2[..,x]] in
let [g,x:names F brefl] = el in
let [g,x:names, z:names prefl] = e2 in
[g = bsc (bs_par2 B2’) \x.(c_sym sc_ext_par)]
)
%l [g = bs_open \x.F[..,x]] = previously proved in section 3.3.2
)
| [g F sc_ext_res] =
(case b of
| [g F bs_res \x.B[..,x]] =
(case [g,x:names F B[..,x]] of
| [g,x:names bs_res \y.B’[..,x,yl] =
[g F bsc (bs_res \y.(bs_res \x.B’[..,x,y])) \x.sc_ext_res]
| [g,x:names F bs_open \y.F[..,x,yl] =
[g - bsc (bs_open \y.(fs_res \x.F[..,x,y])) \x.c_ref]
)
| [g - bs_open \x.F[..,x]] =
let [g,x:names F fs_res \y.F’[..,x,y]] = [g,x:names + F[..,x]]
in [g F bsc (bs_res \y.(bs_open \x.F’[..,x,y])) \x.c_ref]
)
| [g F c_in \x.C1[..,x]] =
let [g F bs_in] = b in [g F bsc bs_in \x.(c_sym C1[..,x])]
| [g F c_out Cl1] = impossible b
| [g F c_par C1] =
(case b of
| [g F bs_parl B1] =
let [g - bsc B2 \x.C2[..,x]] =
cong_bstepright_impl_bstepleft [g - C1] [g - B1] in
[g F bsc (bs_parl B2) \x.(c_par C2[..,x])]
| [g F bs_par2 B1] =
[g - bsc (bs_par2 B1l) \x.(c_par (c_sym C1[..]1))]
)
| [gF c_res \x.C[..,x]] =
(case b of
| [g F bs_res \x.B[..,x]] =
let [g,x:names - bsc B’[..,x] \y.C’[..,x,y]] =
cong_bstepright_impl_bstepleft [g,x:names F C[..,x]]
[g,x:names F B[..,x]] in
[g F bsc (bs_res \x.B’[..,x]) \y.(c_res \x.C’[..,x,y])]
| [g - bs_open \x.F[..,x]] =
let [g,x:names F fsc F’[..,x] C’[..,x]] =
cong_fstepright_impl_fstepleft [g,x:names F C[..,x]]
[g,x:names F F[..,x]] in
[g - bsc (bs_open \x.F’[..,x]) \x.C’[..,x]]

85

| [gt c_ref] = let [gF Bl =Db in [g F bsc B \x.c_ref]
| [gF c_sym C’] =
let [g F D] = cong_bstepleft_impl_bstepright [g - C’] b in [g F DI
| [g - c_trans C1 C2] =
let [g F bsc Bl \x.C2’[..,x]] =
cong_bstepright_impl_bstepleft [g - C2] b in
let [g F bsc B2 \x.C1’[..,x]] =
cong_bstepright_impl_bstepleft [g - C1] [g F B1] in
[g - bsc B2 \x.(c_trans C2°[..,x] C1°[..,x])]

86

Bibliography

Brian E. Aydemir et al. “Mechanized Metatheory for the Masses: The Popl-
Mark Challenge”. In: Theorem Proving in Higher Order Logics. Ed. by Joe
Hurd and Tom Melham. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005,
pp. 50-65. 1SBN: 978-3-540-31820-0.

Hendrik Pieter Barendregt. The Lambda Calculus - its Syntax and Semantics.
Vol. 103. Studies in logic and the foundations of mathematics. North-Holland,
1985. 1SBN: 978-0-444-86748-3.

N. G. de Bruijn. “Telescopic Mappings in Typed Lambda Calculus”. In: Inf.
Comput. 91.2 (1991), pp. 189-204. DOI: [10.1016/0890-5401(91) 90066-B.

Roy L. Crole. “Alpha Equivalence Equalities”. In: Theor. Comput. Sci. 433
(2012), pp. 1-19. DoOI: [10.1016/J.TCS.2012.01.030.

N.G de Bruijn. “Lambda Calculus Notation with Nameless Dummies: A Tool
for Automatic Formula Manipulation, with Application to the Church-Rosser
Theorem”. In: Indagationes Mathematicae (Proceedings) 75.5 (1972), pp. 381—
392. 1SSN: 1385-7258. DOIL: https://doi.org/10.1016/1385-7258(72)
90034-0.

Jacob Errington, Junyoung Jang, and Brigitte Pientka. “Harpoon: Mechaniz-
ing Metatheory Interactively - (System Description)”. In: Automated Deduc-
tion - CADE 28 - 28th International Conference on Automated Deduction,
Virtual Event, July 12-15, 2021, Proceedings. Ed. by André Platzer and Ge-
off Sutcliffe. Vol. 12699. Lecture Notes in Computer Science. Springer, 2021,
pp. 636-648. DOI: 10.1007/978-3-030-79876-5_38.

Murdoch Gabbay and Andrew M. Pitts. “A New Approach to Abstract Syntax
with Variable Binding”. In: Formal Aspects Comput. 13.3-5 (2002), pp. 341—
363. DOI: 10.1007/S001650200016.

Robert Harper, Furio Honsell, and Gordon D. Plotkin. “A Framework for
Defining Logics”. In: J. ACM 40.1 (1993), pp. 143-184. DO1: 10.1145/138027 .
138060.

Daniel Hirschkoff. A Brief Survey of the Theory of the w-Calculus. Laboratoire
de I'Informatique du Parallélisme. 2415p. 2003.

Furio Honsell, Marino Miculan, and Ivan Scagnetto. “r-Calculus in (Co)Induc-
tive Type Theory”. In: Theor. Comput. Sci. 253.2 (2001), pp. 239-285. DOI:
10.1016/S0304-3975(00)00095-5.

William Alvin Howard. “The Formulae-as-Types Notion of Construction”. In:
To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and For-
malism. Ed. by Haskell Curry et al. Academic Press, 1980.

87

https://doi.org/10.1016/0890-5401(91)90066-B
https://doi.org/10.1016/J.TCS.2012.01.030
https://doi.org/https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1007/978-3-030-79876-5_38
https://doi.org/10.1007/S001650200016
https://doi.org/10.1145/138027.138060
https://doi.org/10.1145/138027.138060
https://doi.org/10.1016/S0304-3975(00)00095-5

BIBLIOGRAPHY

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

22]

Frederik Krogsdal Jacobsen et al. “The Concurrent Calculi Formalisation
Benchmark”. 2024.

Robbert Krebbers, Alberto Momigliano, and Brigitte Pientka. Formalization
of Programming Languages. Assia Mahboubi and Jasmin Blanchette, forth-
coming.

Conor McBride. “Dependently Typed Functional Programs and their Proofs”.
PhD thesis. University of Edinburgh, UK, 2000. URL: https://hdl.handle.
net/1842/374.

Robin Milner, Joachim Parrow, and David Walker. “A Calculus of Mobile
Processes, 11", In: Inf. Comput. 100.1 (1992), pp. 41-77. pOI: |10.1016/0890-
5401(92)90009-5.

Joachim Parrow. “An Introduction to the w-Calculus”. In: Handbook of Process
Algebra. Ed. by Jan A. Bergstra, Alban Ponse, and Scott A. Smolka. North-
Holland / Elsevier, 2001, pp. 479-543. po1: 10 . 1016 /B978 - 044482830 -
9/50026-6. URL: https://doi.org/10.1016/978-044482830-9/50026-6.

Doron A. Peled. “Formal Methods”. In: Handbook of Software Engineering.
Ed. by Sungdeok Cha, Richard N. Taylor, and Kyo Chul Kang. Springer,
2019, pp. 193-222. DOI: [10.1007/978-3-030-00262-6_5!

Frank Pfenning and Conal Elliott. “Higher-Order Abstract Syntax”. In: Pro-
ceedings of the ACM SIGPLAN’88 Conference on Programming Language De-
sign and Implementation (PLDI), Atlanta, Georgia, USA, June 22-2/4, 1988.
Ed. by Richard L. Wexelblat. ACM, 1988, pp. 199-208. DO1: 10.1145/53990.
54010.

Brigitte Pientka. Beluga Reference Guide. https://complogic.cs.mcgill.
ca/beluga/userguide2/userguide.pdf.

Brigitte Pientka. Mechanizing Types and Programming Languages: A Com-
panion. https://complogic.cs.mcgill.ca/beluga/meta.pdf. 2015.

Brigitte Pientka and Andrew Cave. “Inductive Beluga: Programming Proofs”.
In: Automated Deduction - CADE-25 - 25th International Conference on Au-
tomated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings. Ed. by
Amy P. Felty and Aart Middeldorp. Vol. 9195. Lecture Notes in Computer Sci-
ence. Springer, 2015, pp. 272-281. DOI: 10.1007/978-3-319-21401-6_18.

Brigitte Pientka and Jana Dunfield. “Beluga: A Framework for Program-
ming and Reasoning with Deductive Systems (System Description)”. In: Au-
tomated Reasoning, 5th International Joint Conference, [JCAR 2010, Edin-
burgh, UK, July 16-19, 2010. Proceedings. Ed. by Jiirgen Giesl and Reiner
Héahnle. Vol. 6173. Lecture Notes in Computer Science. Springer, 2010, pp. 15—
21. DOI: 10.1007/978-3-642-14203-1_2.

Davide Sangiorgi and David Walker. The w-Calculus - a Theory of Mobile
Processes. Cambridge University Press, 2001. 1SBN: 978-0-521-78177-0.

Alwen Tiu and Dale Miller. “Proof Search Specifications of Bisimulation and
Modal Logics for the m-Calculus”. In: ACM Trans. Comput. Log. 11.2 (2010),
13:1-13:35. DOI: 10.1145/1656242.1656248.

88

https://hdl.handle.net/1842/374
https://hdl.handle.net/1842/374
https://doi.org/10.1016/0890-5401(92)90009-5
https://doi.org/10.1016/0890-5401(92)90009-5
https://doi.org/10.1016/B978-044482830-9/50026-6
https://doi.org/10.1016/B978-044482830-9/50026-6
https://doi.org/10.1016/b978-044482830-9/50026-6
https://doi.org/10.1007/978-3-030-00262-6_5
https://doi.org/10.1145/53990.54010
https://doi.org/10.1145/53990.54010
https://complogic.cs.mcgill.ca/beluga/userguide2/userguide.pdf
https://complogic.cs.mcgill.ca/beluga/userguide2/userguide.pdf
https://complogic.cs.mcgill.ca/beluga/meta.pdf
https://doi.org/10.1007/978-3-319-21401-6_18
https://doi.org/10.1007/978-3-642-14203-1_2
https://doi.org/10.1145/1656242.1656248

BIBLIOGRAPHY

[25]

Christian Urban and Michael Norrish. “A Formal Treatment of the Baren-
dregt Variable Convention in Rule Inductions”. In: ACM SIGPLAN Inter-
national Conference on Functional Programming, Workshop on Mechanized
reasoning about languages with variable binding, MERLIN 2005, Tallinn, Fs-

tonia, September 30, 2005. Ed. by Randy Pollack. ACM, 2005, pp. 25-32. DOI:
10.1145/1088454.1088458.

89

https://doi.org/10.1145/1088454.1088458

	Introduction
	The π-Calculus and its Operational Semantics
	Syntax
	Bound Names and Variable Convention

	Semantics
	Reduction Semantics
	Labelled Transition System Semantics

	Equivalence of Reduction and LTS Semantics
	Theorem 1: τ-Transition Implies Reduction
	Theorem 2: Reduction Implies τ-Transition

	Beluga Formalization
	Syntax
	Semantics
	Reduction Semantics
	Labelled Transition System Semantics

	Equivalence of Reduction and LTS Semantics
	Theorem 1: τ-Transition Implies Reduction
	Theorem 2: Reduction Implies τ-Transition

	Conclusions
	Evaluation
	Related and Future Work

	Equivalence between Early and Late Semantics
	Proof of Lemma 2.6
	Formalization of Lemma 2.6

