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Reversible concurrent calculi are abstract models for concurrent systems in which any action can
potentially be undone. Over the last few decades, different formalisms have been developed and their
mathematical properties have been explored; however, none have been machine-checked within a
proof assistant. This paper presents the first Beluga formalization of the Calculus of Communicating
Systems with Keys and Proof labels (CCSKP), a reversible extension of CCS. Beyond the syntax and
semantics of the calculus, the encoding covers state-of-the-art results regarding three relations over
proof labels – namely, dependence, independence and connectivity – which offer new insights into the
notions of causality and concurrency of events. As is often the case with formalizations, our encoding
introduces adjustments to the informal proof and makes explicit details which were previously only
sketched, some of which reveal to be less straightforward than initially assumed. We believe this work
lays the foundations for future reversible concurrent calculi formalizations.

1 Introduction

Concurrency in computer science refers to the simultaneous execution of multiple operations or com-
putations in a shared environment. It is a fundamental aspect of modern computing, with practical use
in several domains such as operating systems, networking and distributed systems. Process calculi like
CCS [16] and the π-calculus [17] are well-studied and established mathematical models for formally
describing and reasoning about concurrent systems.

In recent years, reversing computations in concurrent systems has gained significant attention, with
applications in fields like hardware, software and biochemistry [22]. Enriching concurrent systems with
reversibility poses its own set of challenges: for instance, it requires providing some kind of history-
preserving mechanism to take track of past actions. Additionally, undoing computation steps in a parallel
setting is more complex than in a sequential system: as explained in Fig. 1, reversing a specific action
performed by a single thread may require knowing, and eventually undoing, the actions of the other
threads it has previously interacted with.

Reversible concurrent calculi address such challenges in various ways. For example, Reversible
CCS (RCCS) [11] equips processes with a memory that records information about past computations;
conversely, CCS with Keys (CCSK) [20] associates unique keys to each forward action. The latter has
been recently upgraded to CCSK with Proof labels (CCSKP) [4], which features a proved transition
system in the fashion of Degano and Priami [12]; proof labels enable the definition of dependence and
independence for both forward and backward transitions. In this framework, the contributions brought by
Aubert et al. [3] merit attention. The authors are the first to introduce separate axioms for the relations
of dependence, independence and connectivity on proof labels: such relations are proved to be sound,
interrelated, and linked to the broader notions of concurrency and causality of events. Additionally, the
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2 A Formalization of the Reversible Concurrent Calculus CCSKP in Beluga

The diagram on the left illustrates the dupli-
cation of a thread, followed by a message ex-
change between the resulting branches and
some further independent computation steps.
To undo the computation step marked in red,
which belongs to one of the two threads and
precedes their interaction, it is necessary to first
undo each of the steps marked in blue, including
those of the other thread.

Figure 1: Example of reversal of computation steps in a concurrent setting.

authors outline the difference between various kinds of bisimulations, such as the history preserving
bisimulation for CCS.

Formal verification has become a cornerstone in the development of new systems, certifying the
correctness of their syntax, semantics and behavioral properties in the most reliable way. In the case of
concurrent calculi, there is a long tradition which spans from the early mechanizations by [18] and [15] in
HOL to the recent contributions of the Concurrent Calculi Formalisation Benchmark [6]; we also recall
the Rocq formalization of the π-calculus by Honsell et al. [14], which has been the baseline for numerous
higher-order abstract syntax (HOAS) [19] mechanizations. When it comes to reversible concurrent calculi,
however, the landscape looks rather different. Despite the availability of C# and Java implementations of
CCSK [10][1], no machine-checked formalization of reversible concurrent calculi currently exists – at
least to the best of our knowledge.

This paper presents the first formalization of CCSKP in Beluga [21]. Our encoding covers the core
definitions of the system: its syntax, semantics, and the relations of dependence, independence and
connectivity on proof labels. Additionally, this work formalizes the central results presented in Sections 3
and 4 of [3], including the complementarity of dependence and independence and the relationship between
connectivity of transitions and proof labels. The proofs come along with a library of auxiliary lemmas
regarding processes, keys and transitions.

Formalizations typically require small adjustments to fit the proof assistant’s framework, while
carefully addressing any of the details which are taken for granted in the informal proof. This encoding is
no exception: the formalization process led to minor refinements in the definition of connectivity over
proof labels and clarified the proof of one of the aforementioned results, which called for a different
approach separating base and inductive cases. Beluga, as a proof assistant, is ideal for reasoning about
deductive systems together with their meta-theory, as it naturally supports encodings of object-level
binding constructs through higher-order abstract syntax and allows pairing terms with the contexts that
give them meaning [21]. Although our HOAS encoding leverages Beluga’s strengths and showcases its
versatility, it also deals with limitations such as the lack of syntactic sugar for existentials or conjunctions;
considerations on its adoption are further elaborated in the conclusions.

The paper is structured as follows. Section 2 provides an informal description of CCSKP and the
results under our study. Section 3 presents the Beluga formalization of such notions and properties.
Section 4 contains a technical overview of the formalization, a summary of our contributions and possible
future work directions. The artifact is archived in Zenodo [7] and available in the associated GitHub
repository https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP.

https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP
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2 CCSKP

In this section we recall the main definitions and properties of CCSKP, as outlined in [3]. We assume
familiarity with the basic notions of CCS. Definitions are hyperlinked to their encoding in the repository.

2.1 Syntax

As in the standard CCS, we assume the existence of an infinite set N of names, ranged over by a,b,c, with
a bijection ·: N→ N denoting the complement of a name; names and complementary names respectively
denote input and output ports for processes. We define the set of labels L as N∪N∪{τ}, where τ denotes
the interaction of concurrent processes. L is ranged over by α, while L\{τ} is ranged over by λ .

To introduce reversibility, CCSK extends the syntax of CCS with a denumerable set K of keys, ranged
over by k,m,n. Labels are paired with keys to define keyed labels, which are elements of the cartesian
product L×K and are represented as a[k],b[m]; the set of keyed labels is also denoted as LK.

Processes are defined as in the ordinary CCS, with the addition of keyed prefixes and without operators
for recursion or replication:

X ,Y ::= 0 (Inactive) | α.X (Prefix)
| α[k].X (Keyed prefix) | X +Y (Sum)
| X | Y (Parallel composition) | X \a (Restriction)

The set of processes is denoted as X. When preceded by a (keyed) prefix, the inactive process 0 is usually
omitted; the binding power of the operators, from highest to lowest, is \a,α[k],α, | and +. In restrictions
X \a, the occurrences of the name a in X are said to be bound; all other occurrences of names and keys in
processes are considered free. Processes that are α-equivalent, i.e., that differ only in the choice of their
bound names, will be identified. Unlike [3], restrictions only bind names and not complementary names:
this choice does not rule out any significant process (since X \a or X \a have the same behaviour) and
leads to a clearer correspondence between processes and their encoding.

The set of keys occurring in a process is denoted as keys(X). A process for which keys(X) is empty is
said to be standard: in this case, we write that std(X) holds.

2.2 Semantics

The key feature of CCSKP is the notion of proof keyed labels:

θ ::= vα[k] | v⟨|Lv1λ [k], |Rv2λ [k]⟩

where v,v1 and v2 range over strings of symbols {|L, |R,+L,+R}. We denote the set of proof keyed labels
as LPK, and refer to its elements simply as “proof labels” for brevity. The following functions ℓ and 𝓀 map
each proof label to its underlying label and key, respectively:

ℓ(vα[k]) = α ℓ(v⟨|Lv1λ [k], |Rv2λ [k]⟩) = τ 𝓀(vα[k]) = k 𝓀(v⟨|Lv1λ [k], |Rv2λ [k]⟩) = k

Semantics is given by the labelled transition system (X,LPK, 7
θ−→), where 7 θ−→ denotes the union of the

forward and backward transitions displayed in Fig. 2. We will refer to the union of forward and backward
transitions as combined transitions. Given a transition X 7 θ−→Y , the process X is said to be its source, while
Y is said to be its target.

https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/1_definitions.bel#L5-L7
https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/1_definitions.bel#L15-L20
https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/1_definitions.bel#L9-L13
https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/1_definitions.bel#L22-L30
https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/1_definitions.bel#L115-L122
https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/1_definitions.bel#L65-L73
https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/1_definitions.bel#L75-L83
https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/1_definitions.bel#L85-L93
https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/1_definitions.bel#L135-L173
https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/1_definitions.bel#L175-L179
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Prefix and Keyed Prefix

Forward
std(X) pref

α.X 7 α [k]−−→ α[k].X

X 7 θ−→ X ′
𝓀(θ) ̸= k kpref

α[k].X 7 θ−→ α[k].X ′

Backward
std(X) pref

α[k].X 7 α [k]
α.X

X ′ 7 θ X𝓀(θ) ̸= k kpref
α[k].X ′ 7 θ

α[k].X

Sum

Forward
X 7 θ−→ X ′

std(Y ) +L
X +Y 7 +Lθ−−→ X ′+Y

Backward
X ′ 7 θ X

std(Y ) +L
X ′+Y 7 +Lθ X +Y

Parallel Composition

Forward
X 7 θ−→ X ′

𝓀(θ) /∈ keys(Y ) |L
X | Y 7 |Lθ−−→ X ′ | Y

X 7 vLλ [k]−−−→ X ′ Y 7 vRλ [k]−−−→ Y ′
syn

X | Y 7 ⟨|LvLλ [k],|RvRλ [k]⟩−−−−−−−−−−→ X ′ | Y ′

Backward
X ′ 7 θ X𝓀(θ) /∈ keys(Y ) |L

X ′ | Y 7 |Lθ
X | Y

X ′ 7 vLλ [k]
X Y ′ 7 vRλ [k]

Y syn
X ′ | Y ′ 7 ⟨|LvLλ [k],|RvRλ [k]⟩

X | Y

Restriction

Forward
X 7 θ−→ X ′

ℓ(θ) /∈ {a,a} nu
X\a 7 θ−→ X ′\a

Backward
X ′ 7 θ X

ℓ(θ) /∈ {a,a} nu
X ′\a 7 θ X\a

Figure 2: Forward and backward transition rules for CCSKP (right rules for | and + omitted).

Example 1 Consider a webpage that allows the user to interact via two independent buttons: one to
toggle between light and dark mode, and another to switch between two different languages. The initial
state of the system can be modeled as the parallel composition m | l, where the labels m and l represent
the actions to switch the visual mode and the language, respectively.

The action of changing the visual mode can be represented by the following forward transition:
m | l 7 |Lm[k]−−−→ m[k] | l. The target process preserves the label m and pairs it with a fresh key k. The proof
label |Lm[k] not only stores the label m and key k used in the transition, but also indicates that the action
occurred on the left-hand side of a parallel composition.

Suppose the user now wishes to revert to the previous visual mode: pressing the mode button again
can be interpreted as undoing the previously executed action. This can be modeled by the following
backward transition, which removes the key associated with the earlier forward step: m[k] | l 7 |Lm[k]

m | l.

Two transitions are said to be composable if they can be performed consecutively – that is, the target
of the first transition is the source of the second transition. A path is a (potentially empty) sequence of
composable transitions and can be denoted as X 7−→∗ Y , where X is the source of the first transition (also
called the source of the path) and Y is the target of the last transition (also called the target of the path); in

https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/1_definitions.bel#L181-L186
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other words, 7→∗ is the reflexive and transitive closure of 7→. A process X is reachable if there exists a
path whose target is X and whose source is a standard process. This process, which can be proved to be
unique (cf. Lemma B.13 in [2]), is called the origin of X and is denoted as OX .

Reachability allows to rule out faulty processes which are syntactically well-formed, but whose
particular selection of keys is inconsistent. For instance, this arises when the same key denotes successive
actions, as in the process a[k].b[k], or when keys internally form a cycle, as in the deadlocked process
a[k].b[m] | b̄[m].ā[k], where neither action can be undone because of the presence of its associated key in
the other thread. From this point on, each process will be assumed to be reachable.

The loop lemma (cf. Lemma 3.8 in [3]) is an important result characterizing reversible labelled
transition systems. It states that any transition X 7 θ−→ Y can be reversed, yielding a transition Y 7 θ−→ X ;
moreover, the reversing operator is an involution (i.e., reversing a transition twice returns the original
transition). The validity of the loop lemma follows directly from the symmetry of the LTS (Labelled
Transition System) rules presented in Fig. 2.

Connectivity Relation
Action

A1

α[k]⋎ θ

A2

θ ⋎ α[k]

Parallel
θ1 ⋎ θ2

P1
d|dθ1 ⋎ |dθ2

P2
d|dθ1 ⋎ |dθ2

Choice
θ1 ⋎ θ2

C1
d+dθ1 ⋎+dθ2

C2
d+dθ1 ⋎+dθ2

Synchronization
θ ⋎ θd

S1
d|dθ ⋎ ⟨|LθL, |RθR⟩

θd ⋎ θ
S2

d⟨|LθL, |RθR⟩⋎ |dθ

θ1 ⋎ θ
′
1 θ2 ⋎ θ

′
2

S3

⟨|Lθ1, |Rθ2⟩⋎ ⟨|Lθ
′
1, |Rθ

′
2⟩

Dependence Relation
Action

A1

α[k] ] θ

A2

θ ] α[k]

Choice
θ ] θ

′
C1

d
+dθ ]+dθ

′
C2

d
+dθ ]+dθ

′

Parallel
θ ] θ

′
P1

d|dθ ] |dθ
′

𝓀(θ) = 𝓀(θ ′)
P2

d|dθ ] |dθ
′

Synchronization
θ ] θd

S1
d|dθ ] ⟨|LθL, |RθR⟩

θd ] θ
S2

d⟨|LθL, |RθR⟩ ] |dθ

θ i ] θ
′
i θ j ⋎ θ

′
j i, j ∈ {1,2}, i ̸= j

S3

⟨|Lθ1, |Rθ2⟩ ] ⟨|Lθ
′
1, |Rθ

′
2⟩

Independence Relation
Action

(empty)

Choice
θ ι θ

′
C1

d
+dθ ι +dθ

′

Parallel
θ ι θ

′
P1

d|dθ ι |dθ
′

𝓀(θ) ̸= 𝓀(θ ′)
P2

d|dθ ι |dθ
′

Synchronization
θ ι θd

S1
d|dθ ι ⟨|LθL, |RθR⟩

θd ι θ
S2

d⟨|LθL, |RθR⟩ ι |dθ

θ1 ι θ
′
1 θ2 ι θ

′
2

S3

⟨|Lθ1, |Rθ2⟩ ι ⟨|Lθ
′
1, |Rθ

′
2⟩

Figure 3: Causality relations on proof labels.

https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/1_definitions.bel#L188-L191
https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/2_basic_properties.bel#L160-L192
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Finally, the binary relations of connectivity, dependence and independence on proof labels, respectively
denoted as ⋎,] and ι , are defined by the rules displayed in Fig. 3, where the label d ranges over {L,R}
and d denotes the opposite of d (i.e., L = R and R = L). Such relations will be referred to as causality
relations for brevity. Compared to [3], the rule A2 for connectivity and dependence has been slightly
modified, ensuring that each relation is symmetric and simplifying their encoding. This comes at the cost
of losing uniqueness in derivations of judgements such as θ 1 ⋎ θ 2; however, this property has been shown
not to be required for the purposes of our development.
Example 2 The process m | l, introduced in Example 1 to model a webpage, can perform a forward
transition labelled by |Lm[k1], representing the toggling of the visual mode. It can also perform a transition
m | l 7 |Rl[k2]−−−→ m | l[k2], denoting the change of the language of the webpage. The two transitions are
independent, as the order in which they are executed does not affect the resulting state. This is reflected in
the independence of the two proof labels |Lm[k1] and |Rl[k2], which follows from the P2

L rule in Fig. 3.
Conversely, consider the process a.b | b̄. It can perform a forward transition labelled by |La[k],

followed by another forward transition labelled by |Lb[n]. However, these transitions cannot be performed
in reverse order, since the input action along b is only enabled after the input action along a has occurred;
the two transitions are thus causally related. This is reflected in the dependence of the two proof labels
|La[k] and |Lb[n], which follows from the P1

L and A1 rules in Fig. 3.

2.3 Properties of causality relations

We now turn to the theorems and lemmas object of our study. Their complete proof can be found in
[2], the technical report accompanying [3]. The following theorem specifies the relationship between
connectivity of transitions and connectivity of proof labels:
Theorem 2.1 (cf. Proposition 4.4 in [3])

(i) If t1 : X1 7 θ 1−→ X ′
1 and t2 : X2 7 θ 2−→ X ′

2 are connected, then θ 1 ⋎ θ 2.

(ii) If θ 1 ⋎ θ 2, then there exist t1 : X1 7 θ 1−→ X ′
1 and t2 : X2 7 θ 2−→ X ′

2 such that t1 and t2 are connected.

The proof of Theorem 2.1(i) relies on the fact that OX1 = OX2 and proceeds by induction over such origin
process: recall that each process is assumed to be reachable and, therefore, has an origin. The equality of
OX1 and OX2 follows from the two lemmas:
Lemma 2.2 For all reachable processes X and Y , there exists a path X 7→∗ Y iff OX = OY .

Lemma 2.3 If t1 : X1 7 θ 1−→ X ′
1 and t2 : X2 7 θ 2−→ X ′

2 are connected, then OX1 = OX2 .

Conversely, the proof of Theorem 2.1(ii) proceeds by structural induction over the given hypothesis
θ 1 ⋎ θ 2 and relies on the following:
Definition 2.4 (Realisation) A process X realises the proof label θ if there exist X1 and X2 such that
X 7→∗ X1 7 θ−→ X2.

Lemma 2.5 For every proof label θ , there exists a process that realises it, and we denote it r(θ).

Next, the following theorem states the complementarity of the dependence and independence relations:
Theorem 2.6 (cf. Theorem 4.9 in [3])
For all θ 1, θ 2,

(i) If θ 1 ι θ 2 then θ 1 ⋎ θ 2.

(ii) If θ 1 ] θ 2 then θ 1 ⋎ θ 2.

(iii) If θ 1 ⋎ θ 2 then either θ 1 ι θ 2 or θ 1 ] θ 2, but not both.

This theorem is proved by induction over the structure of the given binary relation.

https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/1_definitions.bel#L201-L218
https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/1_definitions.bel#L220-L238
https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/1_definitions.bel#L240-L253
https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/4_connectivity_relationship_one.bel#L1-L291
https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/6_connectivity_relationship_two.bel#L590-L598
https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/5_lemmas_connectivity_relationship_two.bel#L3-L8
https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/5_lemmas_connectivity_relationship_two.bel#L10-L29
https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/7_complementarity.bel#L81-L98
https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/7_complementarity.bel#L100-L121
https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/7_complementarity.bel#L131-L212
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3 Beluga Formalization

In this section we outline the key points of the Beluga formalization of the notions presented in Section 2.
Definitions and proofs omitted for brevity are hyperlinked to their encoding in the repository.

3.1 Syntax

Beluga is structured in two layers: the LF (Logical Frameworks [13]) level, which is used to specify the
formal system under study, and the computation level, which supports programming with LF data [21].
To encode the syntax of our system, only the former level is deployed. Names, keys, labels and processes
are encoded using the LF types displayed in Fig. 4.

LF names: type =; LF proc: type =
LF keys: type = | null: proc % 0

| z: keys | pref: labels → proc → proc % A.X
| s: keys → keys; | kpref: labels → keys → proc → proc % A[k].X

LF labels: type = | sum: proc → proc → proc % X+Y
| inp: names → labels | par: proc → proc → proc % X|Y
| out: names → labels | nu: (names → proc) → proc; % X\a
| tau: labels;

Figure 4: Encoding of the syntax of CCSKP.

Since names in CCSKP are an infinite set without any additional assumption, they are represented by a
type names without constructors; as explained in [8], this type will be dynamically inhabited by variables
introduced through contexts. This is enabled by the following line of code:

schema ctx = names;

This line declares contexts made of a finite collection of distinct variables of type names, identified via
the keyword ctx. Thanks to this setup, we can work with contextual processes of the form [g ⊢ X], i.e.,
processes X whose free names are drawn from the context g. Contextual objects live in the computation
level.

Keys are by assumption denumerable, and the LTS rules for keyed prefixes require equality of keys to
be decidable. Both conditions are satisfied by encoding keys explicitly as natural numbers.1 An alternative
approach would be to rely on contexts, as is done for names: however, this would require managing mixed
contexts of names and keys, and having a more complex encoding of transitions and paths.

Restrictions X \a are represented by terms of the form (nu \a.(X a)), where \x.(f x) is Beluga’s
notation for functions f mapping x to f(x): following the higher-order abstract syntax (HOAS) paradigm,
the bound name a is represented as the implicit argument of a meta-language function \a.(X a) from
names to proc. In this way, we leverage the meta-language implementation of binders to achieve
α-renaming and capture-avoiding substitutions for free.

An important but often overlooked aspect of formalizations is the adequacy of the encoding: the
encoding must constitute a faithful representation of the original system into study [9]. Adequacy is
generally established by proving the existence of a compositional bijection between the mathematical
model and its formalized counterpart. The discussion of the adequacy of our encoding is omitted due to
space constraints.

1Note that properties such as decidability of equality must be stated and proved manually, as Beluga does not provide a
built-in library of properties of natural numbers.
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3.2 Semantics

Proof labels are encoded by the type pr_lab in Fig. 5. Rather than directly modeling the informal
definition of proof labels, by defining strings over the symbols {|L, |R,+L,+R} as lists, we are introducing
four constructors (pr_suml, pr_sumr, etc.) that build proof labels incrementally by appending one
symbol at a time. This provides a stronger induction principle and streamlines the encoding of LTS rules
and subsequent proofs.

LF pr_lab: type = LF lab: pr_lab → labels → type =
| pr_base: labels → keys → pr_lab | lab_base: lab (pr_base A K) A
| pr_suml: pr_lab → pr_lab | lab_suml: lab T A → lab (pr_suml T) A
| pr_sumr: pr_lab → pr_lab | lab_sumr: lab T A → lab (pr_sumr T) A
| pr_parl: pr_lab → pr_lab | lab_parl: lab T A → lab (pr_parl T) A
| pr_parr: pr_lab → pr_lab | lab_parr: lab T A → lab (pr_parr T) A
| pr_sync: pr_lab → pr_lab → pr_lab; | lab_sync: lab (pr_sync T1 T2) tau;

LF valid: pr_lab → type =
| v_base: valid (pr_base A K)
| v_suml: valid T → valid (pr_suml T)
| v_sumr: valid T → valid (pr_sumr T)
| v_parl: valid T → valid (pr_parl T)
| v_parr: valid T → valid (pr_parr T)
| v_synl: valid T1 → valid T2 → lab T1 (inp A) → key T1 K

→ lab T2 (out A) → key T2 K → valid (pr_sync T1 T2)
| v_synr: valid T1 → valid T2 → lab T1 (out A) → key T1 K

→ lab T2 (inp A) → key T2 K → valid (pr_sync T1 T2);
LF fstep: proc → pr_lab → proc → type =

| fs_pref: std X → fstep (pref A X) (pr_base A K) (kpref A K X)
| fs_kpref: fstep X T X’ → key T M → neq K M

→ fstep (kpref A K X) T (kpref A K X’)
| fs_suml: fstep X T X’ → std Y → fstep (sum X Y) (pr_suml T) (sum X’ Y)
| fs_sumr: fstep Y T Y’ → std X → fstep (sum X Y) (pr_sumr T) (sum X Y’)
| fs_parl: fstep X T X’ → key T K → notin K Y

→ fstep (par X Y) (pr_parl T) (par X’ Y)
| fs_parr: fstep Y T Y’ → key T K → notin K X

→ fstep (par X Y) (pr_parr T) (par X Y’)
| fs_synl: fstep X T1 X’ → lab T1 (inp L) → key T1 K

→ fstep Y T2 Y’ → lab T2 (out L) → key T2 K
→ fstep (par X Y) (pr_sync T1 T2) (par X’ Y’)

| fs_synr: fstep X T1 X’ → lab T1 (out L) → key T1 K
→ fstep Y T2 Y’ → lab T2 (inp L) → key T2 K
→ fstep (par X Y) (pr_sync T1 T2) (par X’ Y’)

| fs_nu: ({a:names} fstep (X a) T (X’ a)) → fstep (nu X) T (nu X’);

Figure 5: Encoding of the semantics of CCSKP.

In Beluga, predicates are encoded as type families, i.e., types parametrized by arguments: a predicate
P(x1, . . . ,xn) holds iff the corresponding type (P x1 . . . xn) is not empty. Type families are also used
to encode functions, identified with their graph, as in the case of the functions ℓ and 𝓀 returning the
label and key of a proof label: the former is encoded by the type family lab in Fig. 5, while the latter is
encoded by the type family key, here omitted for brevity. For example, given a proof label θ and a label
α, represented as T and A in the encoding, the type lab T A is inhabited iff ℓ(θ) = α.

https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/1_definitions.bel#L85-L93


G. Cecilia 9

Our encoding of proof labels pays the price of being over-expressive: the constructor pr_sync
accepts any two proof labels regardless of their key or label, generating terms that fall outside the original
definition. For example, the term (pr_sync (pr_base A K) (pr_base B M)) has type pr_lab for
any labels A, B and keys K, M, while its counterpart ⟨|Lα[k], |Rβ [m]⟩ is well-defined only if β = α and
k = m. While this is harmless in most of our development, since such spurious terms do not label any
actual transition, it becomes an issue when proving theorems universally quantified on proof labels, such
as Lemma 2.5. To address this problem, we introduce an additional predicate valid, displayed in Fig. 5,
which filters out the spurious terms. It can be proved the existence of a bijection between proof labels and
the set of elements T of type pr_lab for which valid T holds. From this point forward, we will refer to
such terms as valid proof labels.

Forward and backward LTS rules are defined through the type families fstep and bstep in Fig. 5
(with the latter omitted here for brevity). These rules rely on the additional type families std, notin
and neq, hyperlinked to their formalization in the repository, which respectively hold when a process is
standard, when a key does not occur in a process, and when two keys are not equal. The parameters X and
X’ in the fs_nu rule are functions from names to proc, whose arguments represent the binders of the
restrictions. The universal quantification {a:names} is used to abstract over the particular choice of the
binder; moreover, a or ā does not occur in the proof label T, since such parameter does not depend on a
within the body of the universal quantification.

Combined transitions, paths, reachable processes and connected transitions are defined as follows:

LF step: proc → pr_lab → proc → type =
| fw: fstep X T X’ → step X T X’
| bw: bstep X’ T X → step X’ T X;

LF step*: proc → proc → type =
| id_s*: step* X X
| st_s*: step X T Y → step* X Y
| tr_s*: step* X Y → step* Y Z → step* X Z;

LF reachable: proc → type =
| rch: std X → step* X Y → reachable Y;

LF conn_tr: step X T1 X’ → step Y T2 Y’ → type =
| ct: {S1:step X T1 X’}{S2: step Y T2 Y’} step* X Y’ → conn_tr S1 S2;

Paths, or multi-step transitions, can be encoded equivalently using only two constructors; in this
development, the more verbose version has been adopted as it simplified the proof search.

Finally, the relations of connectivity, dependence and independence are encoded through three type
families conn, dep and indep. The former is displayed in Fig. 6. While some of the rules in Fig. 3 are
grouped together, by using the label d in the place of L and R, the encoding requires each rule to be stated
separately, with its own constructor.

3.2.1 Basic properties of keys, proof labels and transitions

Before diving into the theorems related to the causality relations, our encoding requires a small library
of properties of keys, proof labels and transitions: these include the decidability of equality of keys, the
functionality of ℓ and 𝓀, the fact that standard processes have no keys, or the loop lemma. To provide an
overview of how proofs are carried out in Beluga, we will walk through the proof of the following result:
“for all proof labels θ , there exists a label α such that ℓ(θ) = α”. Its code is displayed in Fig. 7:

https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/1_definitions.bel#L155-L173
https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/1_definitions.bel#L115-L122
https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/1_definitions.bel#L124-L132
https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/1_definitions.bel#L50-L60
https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/1_definitions.bel#L220-L238
https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/1_definitions.bel#L240-L253
https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/2_basic_properties.bel#L3-L23
https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/2_basic_properties.bel#L67-L125
https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/2_basic_properties.bel#L130-L141
https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/2_basic_properties.bel#L160-L192
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LF conn: pr_lab → pr_lab → type =
| c_a1: conn (pr_base A K) T
| c_a2: conn T (pr_base A K)
| c_c1l: conn T1 T2 → conn (pr_suml T1) (pr_suml T2)
| c_c1r: conn T1 T2 → conn (pr_sumr T1) (pr_sumr T2)
| c_c2l: conn (pr_suml T1) (pr_sumr T2)
| c_c2r: conn (pr_sumr T1) (pr_suml T2)
| c_p1l: conn T1 T2 → conn (pr_parl T1) (pr_parl T2)
| c_p1r: conn T1 T2 → conn (pr_parr T1) (pr_parr T2)
| c_p2l: conn (pr_parl T1) (pr_parr T2)
| c_p2r: conn (pr_parr T1) (pr_parl T2)
| c_s1l: conn T TL → conn (pr_parl T) (pr_sync TL TR)
| c_s1r: conn T TR → conn (pr_parr T) (pr_sync TL TR)
| c_s2l: conn TL T → conn (pr_sync TL TR) (pr_parl T)
| c_s2r: conn TR T → conn (pr_sync TL TR) (pr_parr T)
| c_s3: conn T1 T1’ → conn T2 T2’ → conn (pr_sync T1 T2) (pr_sync T1’ T2’);

Figure 6: Encoding of the connectivity relation on proof labels.

LF ex_lab: pr_lab → type =
| ex_l: lab T A → ex_lab T;

rec existence_of_lab: (g:ctx) {T:[g ⊢ pr_lab]} [g ⊢ ex_lab T] =
/ total t (existence_of_lab _ t) /
mlam T ⇒ case [_ ⊢ T] of

| [g ⊢ pr_base _ _] ⇒ [g ⊢ ex_l lab_base]
| [g ⊢ pr_suml T’] ⇒ let [g ⊢ ex_l L] = existence_of_lab [g ⊢ T’] in

[g ⊢ ex_l (lab_suml L)]
| [g ⊢ pr_sumr T’] ⇒ let [g ⊢ ex_l L] = existence_of_lab [g ⊢ T’] in

[g ⊢ ex_l (lab_sumr L)]
| [g ⊢ pr_parl T’] ⇒ let [g ⊢ ex_l L] = existence_of_lab [g ⊢ T’] in

[g ⊢ ex_l (lab_parl L)]
| [g ⊢ pr_parr T’] ⇒ let [g ⊢ ex_l L] = existence_of_lab [g ⊢ T’] in

[g ⊢ ex_l (lab_parr L)]
| [g ⊢ pr_sync _ _] ⇒ [g ⊢ ex_l lab_sync];

Figure 7: Proof of the existence of a label in a proof label.

The first two lines of code in Fig. 7 introduce a type family ex_lab, which captures the conclusions
of the lemma to be proved: the type ex_lab T is inhabited whenever there exists a label A for which
lab T A holds. Defining such additional type families is the standard workaround to the lack of syntactic
sugar for existentials and conjunctions in Beluga.

Thanks to the Curry-Howard isomorphism, proofs by induction are encoded through recursive
functions. In Beluga, these are computation-level entities introduced by the keyword rec. The function
existence_of_lab takes as input a context g of schema ctx and a contextual object T of type pr_lab
and returns an object of type ex_lab T. The second line of the proof asserts that the built function is total
and is recursive on the second argument. These conditions are verified by Beluga’s totality checker and
guarantee that the function constitutes a valid proof.

The proof itself begins by introducing the argument T through the keyword mlam; the other argument,
the context g, is implicit due to the use of round brackets in the function declaration. The proof proceeds by
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pattern matching on the object T, which by the Curry-Howard isomorphism corresponds to case analysis
on the structure of T in the informal proof. Underscores are used to omit parameters that Beluga can infer
automatically. The pr_base and pr_sync cases are handled immediately, since we can already provide
the required object of type ex_lab T; for the remaining four cases, the proof proceeds by recursively
applying the function existence_of_lab to a subterm T’ of T, and then using the result to build the
desired object. Recursive calls on structurally smaller objects correspond to applications of the inductive
hypothesis in the informal proof.

We conclude this subsection by addressing the symmetry and irreflexivity of the causality relations.
We report the signature of the function which proves that connectivity is symmetric:

rec symmetric_conn: (g:ctx) [g ⊢ conn T1 T2] → [g ⊢ conn T2 T1] = ...

These lemmas are proved by straightforward inductions on the structure of the given predicate.

3.3 Properties of causality relations

Although the theorems in Section 2.3 are presented in a different order, here we start with the encoding of
Theorem 2.6, as it is straightforward and mirrors the structure of the informal proof.

3.3.1 Encoding of Theorem 2.6

The three statements of the theorem are addressed by four recursive functions: this is because Theo-
rem 2.6(iii) actually consists of two separate assertions, which here we prove separately. Moreover, the
disjunction in the conclusions requires defining an additional type family dep_or_indep. Fig. 8 displays
the proof of the final assertion: “two proof labels cannot be both dependent and independent”. We also
present the signatures of the other recursive functions below.

rec indep_impl_conn: (g:ctx) [g ⊢ indep T1 T2] → [g ⊢ conn T1 T2] = ...
rec dep_impl_conn: (g:ctx) [g ⊢ dep T1 T2] → [g ⊢ conn T1 T2] = ...
LF dep_or_indep: pr_lab → pr_lab → type =

| or_dep: dep T1 T2 → dep_or_indep T1 T2
| or_ind: indep T1 T2 → dep_or_indep T1 T2;

rec conn_impl_dep_or_indep: (g:ctx) [g ⊢ conn T1 T2] → [g ⊢ dep_or_indep T1 T2] = ...

The proof in Fig. 8 is an example of proof by contradiction: given two objects of type dep T1 T2 and
indep T1 T2, the function impossible_dep_and_indep aims to derive an object of the empty type
false, thereby establishing a contradiction. After introducing the arguments d and i, the proof proceeds
by pattern matching on d; depending on the case, the contradiction is reached in one of three distinct
ways.

In case d is built, e.g., through the constructor d_a1 (corresponding to the case A1: α[k] ] θ in the
informal proof), it is immediately clear that an object i of type indep T1 T2 (i.e., α[k] ι θ) does not
exist: this contradiction is exhibited through the keyword impossible. In other subcases, such as when
d is built via d_c1l (corresponding to C1

L: +Lθ ]+Lθ
′, given θ ] θ

′), the contradiction is obtained by
recursively invoking impossible_dep_and_indep on smaller arguments. Finally, in the d_p2l subcase
(|L θ ] |R θ

′, under the assumption 𝓀(θ) =𝓀(θ ′)), we first examine the structure of i and find that it must
have been constructed using i_p2l. This gives us an object N witnessing the inequality 𝓀(θ) ̸= 𝓀(θ ′),
which clearly contradicts our assumption; however, to complete the proof in Beluga, it is first necessary to
apply the auxiliary function uniqueness_of_key for some variable unification, yielding 𝓀(θ) ̸= 𝓀(θ),
followed by the function irreflexive_neq, which states the irreflexivity of the inequality of keys.

https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/7_complementarity.bel#L3-L76
https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/7_complementarity.bel#L81-L185
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rec impossible_dep_and_indep: (g:ctx) [g ⊢ dep T1 T2] → [g ⊢ indep T1 T2]
→ [g ⊢ false] =

/ total d (impossible_dep_and_indep _ _ _ d _) /
fn d,i ⇒ case d of

| [g ⊢ d_a1] ⇒ impossible i
| [g ⊢ d_a2] ⇒ impossible i
| [g ⊢ d_c1l D] ⇒ let [g ⊢ i_c1l I] = i in impossible_dep_and_indep [g ⊢ D] [g ⊢ I]
| [g ⊢ d_c1r D] ⇒ let [g ⊢ i_c1r I] = i in impossible_dep_and_indep [g ⊢ D] [g ⊢ I]
| [g ⊢ d_c2l] ⇒ impossible i
| [g ⊢ d_c2r] ⇒ impossible i
| [g ⊢ d_p1l D] ⇒ let [g ⊢ i_p1l I] = i in impossible_dep_and_indep [g ⊢ D] [g ⊢ I]
| [g ⊢ d_p1r D] ⇒ let [g ⊢ i_p1r I] = i in impossible_dep_and_indep [g ⊢ D] [g ⊢ I]
| [g ⊢ d_p2l H1 H2] ⇒ let [g ⊢ i_p2l H1’ H2’ N] = i in

let [g ⊢ refk] = uniqueness_of_key [g ⊢ H1] [g ⊢ H1’] in
let [g ⊢ refk] = uniqueness_of_key [g ⊢ H2] [g ⊢ H2’] in irreflexive_neq [g ⊢ N]

| [g ⊢ d_p2r H1 H2] ⇒ let [g ⊢ i_p2r H1’ H2’ N] = i in
let [g ⊢ refk] = uniqueness_of_key [g ⊢ H1] [g ⊢ H1’] in
let [g ⊢ refk] = uniqueness_of_key [g ⊢ H2] [g ⊢ H2’] in irreflexive_neq [g ⊢ N]

| [g ⊢ d_s1l D] ⇒ let [g ⊢ i_s1l I] = i in impossible_dep_and_indep [g ⊢ D] [g ⊢ I]
| [g ⊢ d_s1r D] ⇒ let [g ⊢ i_s1r I] = i in impossible_dep_and_indep [g ⊢ D] [g ⊢ I]
| [g ⊢ d_s2l D] ⇒ let [g ⊢ i_s2l I] = i in impossible_dep_and_indep [g ⊢ D] [g ⊢ I]
| [g ⊢ d_s2r D] ⇒ let [g ⊢ i_s2r I] = i in impossible_dep_and_indep [g ⊢ D] [g ⊢ I]
| [g ⊢ d_s3l D1 _] ⇒ let [g ⊢ i_s3 I1 _] = i in

impossible_dep_and_indep [g ⊢ D1] [g ⊢ I1]
| [g ⊢ d_s3r _ D2] ⇒ let [g ⊢ i_s3 _ I2] = i in

impossible_dep_and_indep [g ⊢ D2] [g ⊢ I2];

Figure 8: Proof of the statement “two proof labels cannot be both dependent and independent”.

3.3.2 Encoding of Theorem 2.1

Recall that, throughout our development, each process is assumed to be reachable. Although this
hypothesis is not explicitly stated in theorems and lemmas, it is in fact essential for proving Theorem 2.1
and some of its auxiliary lemmas. For this reason, before outlining its encoding, we refine its statement,
making the reachability assumption explicit:

Theorem 2.1 (Refined)

(i) If t1 : X1 7 θ 1−→ X ′
1 and t2 : X2 7 θ 2−→ X ′

2 are connected and X1 is reachable,2 then θ 1 ⋎ θ 2.

(ii) If θ 1 ⋎ θ 2, then there exist t1 : X1 7 θ 1−→ X ′
1 and t2 : X2 7 θ 2−→ X ′

2, with X1 reachable, such that t1 and t2
are connected.

Since the two statements are encoded by two distinct functions, we discuss them separately. The proof
of Theorem 2.1(i) is given by the following function conn_rel_one:

rec conn_rel_one: (g:ctx) {S1:[g ⊢ step X1 T1 X1’]} {S2:[g ⊢ step X2 T2 X2’]}
[g ⊢ reachable X1] → [g ⊢ conn_tr S1 S2] → [g ⊢ conn T1 T2] = ...

2The reachability of the only X1 is enough to deduce the reachability of any other process in the statement, given the existence
of a path from X1 to such processes.

https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/4_connectivity_relationship_one.bel#L3-L291
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The function takes as inputs two transitions S1 and S2, whose typing judgments introduce the names
of each involved parameter, such as the process X1; these are followed by the further assumptions of
reachability of X1 and connectivity of S1 and S2. The function returns a derivation of the connectivity of
the proof labels T1 and T2.

Although our encoding may appear different – and somewhat longer – than the proof presented in
[2], it is, in essence, faithful to the same underlying structure. The original proof leverages Lemma 2.3 to
establish the equality of the processes OX1 and OX2 , the origins of the sources of the connected transitions
t1 : X1 7 θ 1−→ X ′

1 and t2 : X2 7 θ 2−→ X ′
2. It proceeds by induction on OX1 , observing that its structure determines

that of the processes and transitions in the same environment (e.g., if the outermost operator of OX1 is
a sum, the same applies to X1). The proof then concludes either directly or by applying the induction
hypothesis to transitions involving specific subprocesses.

Below, we outline the changes and technical considerations brought by our encoding of this argument:

• The formalized proof proceeds by pattern matching on an object D of type std OX1, rather than
directly on the process OX1. This is essentially equivalent, since the type family std proc, which
asserts that a process is standard, is itself defined by pattern matching on the underlying process.

• It is not necessary to encode Lemma 2.3. The reachability of X1, together with the existence of a
path from X1 to X2, provides us a path between OX1 and X2; this path is enough to determine the
structure of X2, known the structure of OX1 .

• The proof requires analyzing the structure of the given transitions S1 and S2. Since combined
transitions are either forward or backward, and each have their own constructors, this results in four
levels of nested pattern matching. While most of the subcases can be unified in the informal proof,
Beluga requires them to be treated separately: this is the primary reason for the proof’s length. To
improve efficiency, certain assertions have been moved earlier in the proof tree compared to their
position in the informal version.

• The informal proof takes for granted structural properties such as: “given a path whose source is a
sum process, the target is also a sum process”, or “given a path between two sum processes, there
exists a path between their left addends”. In the encoding, these results must be explicitly stated
and proved, resulting in 16 additional lemmas. Some of these require classical techniques such as
mutual recursion or strengthening of contextual judgments, which are described in [8]. We report
the signatures of two of these functions:

% Type family encoding sum processes
LF is_sum: proc → type =

| sm: is_sum (sum X Y);
% A path starting from a sum process ends in a sum process
rec step*_from_sum: (g:ctx) [g ⊢ step* (sum X Y) Z] → [g ⊢ is_sum Z] = ...
% Given a path between sum processes, there is a path between their left addends
rec step*_betw_sums_left: (g:ctx) [g ⊢ step* (sum X1 X2) (sum Y1 Y2)]

→ [g ⊢ step* X1 Y1] = ...

The formalization of Theorem 2.1(ii) requires encoding Lemma 2.5, which states that every proof
label θ is realised by some process r(θ) – that is, there exist processes X1, X2 and r(θ) such that
r(θ) 7→∗ X1 7 θ−→ X2. The original proof in [2], however, goes further: it builds a process r(θ) which
is standard and directly performs a single forward transition r(θ) 7 θ−→ X2 (in other words, r(θ) and X1
coincide). Our encoding reflects this stronger formulation by specializing the original Definition 2.4 with
the following type family realised:

https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/3_lemmas_connectivity_relationship_one.bel#L1-L289
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LF realised: pr_lab → type =
| rl: std X → fstep X T X’ → realised T;

For any proof label T, realised T is non empty iff std X and fstep X T X’ hold for some X and X’.
The following recursive function pr_lab_is_realised encodes the proof of Lemma 2.5:

rec pr_lab_is_realised: (g:ctx) [g ⊢ valid T] → [g ⊢ realised T] = ...

The proof is a straightforward induction on the structure of the assumption valid T.
Other than relying on Lemma 2.5, the proof of Theorem 2.1(ii) in [2] assumes auxiliary results such

as the following: “if OX realises X and OY realises Y , then OX | OY realises X |Y ”. While this result holds
in the particular context of Theorem 2.1(ii), where X | Y is known to be reachable and is able to perform a
synchronization, it does not hold in general. For instance, consider X1 = a[k] and X2 = b[k]: the parallel
composition a[k] | b[k] is not reachable from a | b. Moreover, even when such conditions are met, building
a constructive proof is far from straightforward. These issues led us to revisit the entire argument and
develop the following proof strategy for Theorem 2.1(ii):

1. First, we consider the case where neither ℓ(θ 1) nor ℓ(θ 2) is τ and prove that the diagram in Fig. 9a
holds. The hypothesis excludes the cases in which θ 1 and θ 2 label synchronizations, thus ruling out
the scenarios in which the aforementioned auxiliary lemma occurs. The proved result goes beyond
establishing the connectivity of two combined transitions labelled by θ 1 and θ 2: both transitions
are forward, and the processes X1 and X ′

2 are either identical or connected by a single combined
transition. Additionally, we show that at least one among X1 and X ′

2 is standard.

2. We then move to the general case, proving that for any connected pair of proof labels θ 1 and θ 2 the
diagram in Fig. 9b holds. Analogously to the previous point, the transitions labelled by θ 1 and θ 2
are forward, meaning that our statement is slightly more specific than the original formulation of
Theorem 2.1(ii). This refinement helps eliminating non-existent subcases that would arise in the
nested pattern matching of combined transitions.

X1

X2

X ′
1

X ′
27−−−−−−−−−−−−→

θ 1

θ 2

(a) Base case of the proof strategy.

X1

X2

X ′
1

X ′
27−−−→ ·· · 7−−−→

θ 1

θ 2

(b) General case of the proof strategy.

Figure 9: Proof strategy for Theorem 2.1(ii).

In the general case, when θ 1 and θ 2 label synchronizations (e.g., when θ 1 = ⟨|Lθ
1
L, |Rθ

1
R⟩), the labels

of their subterms (e.g., θ
1
L and θ

1
R) are not τ: this detail allows us to apply the base case of the proof

strategy, which provides richer information than the inductive hypothesis of the general Theorem 2.1(ii).
That additional information is essential: it enables us to build the desired path between X1 and X ′

2, actually
with at most two transition steps.

The encoding of Theorem 2.1(ii) follows the plan outlined. The base case makes use of the fol-
lowing elements: a type family lab_not_tau, characterizing proof keyed labels whose label is not τ;

https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/5_lemmas_connectivity_relationship_two.bel#L10-L29
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a type family max_one_step, encoding the conclusions of the statement; and the recursive function
conn_rel_two_base, which proves it.

LF lab_not_tau: pr_lab → type =
| nt_inp: lab T (inp _) → lab_not_tau T
| nt_out: lab T (out _) → lab_not_tau T;

LF max_one_step: pr_lab → pr_lab → type =
| c_id: std X1 → fstep X1 T1 X1’ → fstep X1 T2 X2 → max_one_step T1 T2
| c_fw: std X1 → fstep X1 T1 X1’ → fstep X1 T3 X2’ → fstep X2’ T2 X2

→ lab T1 L1 → lab T3 L1 → max_one_step T1 T2
| c_bw: std X2’ → fstep X1 T1 X1’ → bstep X1 T3 X2’ → fstep X2’ T2 X2

→ lab T2 L2 → lab T3 L2 → max_one_step T1 T2;
rec conn_rel_two_base: (g:ctx) [g ⊢ valid T1] → [g ⊢ valid T2] → [g ⊢ conn T1 T2] →

[g ⊢ lab_not_tau T1] → [g ⊢ lab_not_tau T2] → [g ⊢ max_one_step T1 T2] = ...

The proof of this result is given by a long induction on the structure of the given connectivity relation.
The predicates (lab Ti Lj), for i,j in {1,2,3}, which occur in the type family max_one_step, are a
technical detail which helps completing few subcases of the proof.

Next, the general case of the proof is addressed by the recursive function conn_rel_two_fstep
below, which relies on a dedicated type family as well:

LF ex_conn_fstep: pr_lab → pr_lab → type =
| ex_cf: fstep X1 T1 X1’ → fstep X2’ T2 X2 → step* X1 X2’

→ reachable X1 → ex_conn_fstep T1 T2;
rec conn_rel_two_fstep: (g:ctx) [g ⊢ valid T1] → [g ⊢ valid T2] → [g ⊢ conn T1 T2]

→ [g ⊢ ex_conn_fstep T1 T2] = ...

The proof is given by a long induction on the structure of the given connectivity relation. It requires
encoding auxiliary lemmas such as the following: “given a path between two processes X and X ′, there
is a path between X + 0 and X ′+ 0”, or: “given a forward transition X 7 θ−→ X ′ where X is standard and
𝓀(θ) = k, then any key m ̸= k does not occur in X ′”.

Finally, Theorem 2.1(ii) is encoded by the following function conn_rel_two. It calls the function
conn_rel_two_fstep, applies the loop lemma to reverse one of the two forward transitions, and has all
the ingredients to conclude:

LF ex_conn_tr: pr_lab → pr_lab → type =
| ex_c: {S1: step X T1 X’} {S2: step Y T2 Y’} reachable X → conn_tr S1 S2

→ ex_conn_tr T1 T2;
rec conn_rel_two: (g:ctx) [g ⊢ valid T1] → [g ⊢ valid T2] → [g ⊢ conn T1 T2]

→ [g ⊢ ex_conn_tr T1 T2] =
/ total c (conn_rel_two _ _ _ _ _ c) /
fn v1,v2,c ⇒
let [g ⊢ ex_cf F1 F2 S* (rch D S0*)] = conn_rel_two_fstep v1 v2 c in
let [g ⊢ B2] = loop_lemma_one [g ⊢ F2] in
[g ⊢ ex_c (fw F1) (bw B2) (rch D S0*) (ct (fw F1) (bw B2) S*)];

4 Conclusions and Future Work

We begin with a brief technical overview of the encoding. The complete formalization consists of less
than 2000 lines of code and includes a total of 49 theorems and lemmas. Among them, 13 are direct

https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/6_connectivity_relationship_two.bel#L24-L196
https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/6_connectivity_relationship_two.bel#L205-L581
https://github.com/CinRC/A-Beluga-Formalization-of-CCSKP/blob/main/code/5_lemmas_connectivity_relationship_two.bel#L32-L124
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translations of results stated in Section 2, while the remaining 36 are technical and auxiliary lemmas
introduced to support the encoding.

Beluga has proved to be a reliable and expressive proof assistant, well-suited to represent the definitions
and properties of CCSKP. Its use of higher-order abstract syntax (HOAS) offers a convenient approach
to handling restrictions – even though CCSKP does not feature a particularly complex binding structure,
unlike, for instance, the π-calculus. Furthermore, Beluga’s explicit proof style provides a transparency
that is often lost in proof assistants that rely heavily on automation.

However, the lack of automation also comes with drawbacks, mainly the increased length of proof
terms. This also follows from the lack of syntactic sugar for existentials, conjunctions and disjunctions,
which leads to defining additional type families or splitting theorem statements. Additionally, Beluga
provides no built-in mechanism to simplify repeated proof patterns, requiring each similar subcase to be
handled individually.

Whether the overall outcome is favorable depends largely on the specific system one aims to formalize.
For languages with rich binding structures, the benefits of HOAS alone may outweigh the trade-offs. In
our case, however, this advantage is less significant, and we believe that other proof assistants (such as
Rocq [5]) might be a better fit for formalizing the system at hand.

To the best of our knowledge, this work provides the first formalization of a reversible concurrent
calculus in a proof assistant. We have formally verified the correctness of the notions and results presented
in Section 2. We gained a deeper understanding of the system itself, leading to refinements in both
definitions and proofs; in particular, we provided an alternative way to represent proof labels compared to
the informal definition.

This work lays the foundations for future reversible concurrent calculi formalizations. The encoding
can be adapted to cover the subsystems of CCSKP, i.e., CCS and CCSK, and can be mapped to existing
CCS formalizations. Moreover, it could be extended to include additional portions of [3]. Additionally,
it could be translated into other proof assistants, such as Rocq, which are potentially better suited
for representing this reversible process calculus. Finally, it can serve as a reference point for future
formalizations of other reversible concurrent calculi, such as RCCS.
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