A Formalization of the Reversible
Concurrent Calculus CCSK® in Beluga

Gabriele Cecilia
Augusta University
20 June 2025

1/25

Table of Contents

» Introduction

Reversible Concurrent Calculi

Concurrent Calculi:

e Abstract models for concurrent systems

e Examples: CCS, w-calculus

2/25

Reversible Concurrent Calculi

Concurrent Calculi:

e Abstract models for concurrent systems

e Examples: CCS, w-calculus

Reversible Concurrent Calculi:

e Abstract models for concurrent systems in which every action can be undone
e Examples: CCSK, RCCS, CCSKP

2/25

Reversibility

File

Undo

Home Insert

‘a

Paste D%
¥

Clipboard

0+0 =

fOrward reaction

ba ckward reaction

o

3/25

Reversibility

File

Undo

Home

o

Paste

v

Insert

e
$

Clipboard

0+0 =

forward reaction

ba ckward reaction

o

e Accurate representation of reversible systems

e Computational efficiency: chips, debuggers, quantum computing, ...

3/25

Formalization

How one line of code caused a $60 million loss

60,000 people lost full phone service, half of AT&T's network was down, and 500 airline
flights were delayed

NOV 13, 2023

On January 15th, 1990, AT&T's New Jersey operations center detected a widespread

system malfunction, shown by a plethora of red warnings on their network display.

Despite attempts to rectify the situation, the network remained compromised for 9

hours, leading to a 50% failure rate in call connections.

AT&T lost over $60 million as a result with over 60,000 of Americans left with fully
disconnected phones.

How a single line of code
brought down a half-billion
euro rocket launch

Its Tuesday, June ath, 1996, and
focket for the firs time. Thisis the culmination of a decade of design, testing and a budget
spending billons of euros.

4/25

Formalization

Mechanized Metatheory for the Masses:
The PorPLMARK Challenge

Brian E. Aydemir®, Aaron Bohannon', Matthew Fairbairn?, J. Nathan Foster!,
Benjamin C. Pierce!, Peter Sewell?, Dimitrios Vytiniotis!,
Geoffrey Washburn!, Stephanie Weirich!, and Steve Zdancewic!

! Department of Computer and Information Science,
University of Pennsylvania
2 Computer Laboratory, University of Cambridge

Abstract. How close are we to a world where every paper on program-
ming languages is accompanied by an electronic appendix with machine-
checked proofs?

5/25

Existing Concurrent Calculi Formalizations

| Author, Year |

Publication

Technique

Nesi 94

A Formalization of the Process Algebra CCS in HOL

Named syntax

Melham 94

A Mechanized Theory of the 7m-Calculus in HOL

Named syntax

Hirschkoff 97 A Full Formalisation of 7-Calculus Theory De Bruijn
in the Calculus of Constructions indexes
Bengtson 09 Formalizing Process Calculi Nominal techniques
Miller et al. 99 Foundational Aspects of Syntax HOAS
Honsell et al. 01 m-Calculus in (Co)Inductive Type Theory HOAS

6/25

Existing Concurrent Calculi Formalizations

| Author, Year |

Publication

Technique

Nesi 94

A Formalization of the Process Algebra CCS in HOL

Named syntax

Melham 94

A Mechanized Theory of the 7m-Calculus in HOL

Named syntax

Hirschkoff 97 A Full Formalisation of 7-Calculus Theory De Bruijn
in the Calculus of Constructions indexes
Bengtson 09 Formalizing Process Calculi Nominal techniques
Miller et al. 99 Foundational Aspects of Syntax HOAS
Honsell et al. 01 m-Calculus in (Co)Inductive Type Theory HOAS

... but no reversible concurrent calculi formalizations.

6/25

Table of Contents

» CCSKP

CCS with Keys and Proof labels (CCSKP)

CCSK: CCS with Keys
e A reversible extension of CCS

e Phillips & Ulidowski, 2007

e Processes and transitions enriched with communication keys

7/25

CCS with Keys and Proof labels (CCSKP)

CCSK: CCS with Keys
e A reversible extension of CCS

e Phillips & Ulidowski, 2007

e Processes and transitions enriched with communication keys
CCSKP: CCS with Keys and Proof labels

e A proved transition system for CCSK

e Aubert, 2024

e Semantics enriched with proof labels and causality relations

7/25

Example: Smartphone

8/25

https://www.figma.com/proto/Sep5Nl23CJiAxjjUfRNJV3/ICE-25?node-id=3-459&starting-point-node-id=3%3A459&scaling=scale-down&content-scaling=fixed&t=YAdpa1unhyiTvtnl-1

Example: Smartphone

nnnnnnnnn

Swipe Right

Swipe Left

‘ Representation in CCS:
e O L O Py o left.P, + down.P3

] lzzcs: I lé“:i‘:: P, = right.P, + down.P,
def

m P; = up.P,
00000 Pa %t up.P,y

8/25

https://www.figma.com/proto/Sep5Nl23CJiAxjjUfRNJV3/ICE-25?node-id=3-459&starting-point-node-id=3%3A459&scaling=scale-down&content-scaling=fixed&t=YAdpa1unhyiTvtnl-1

Example: Smartphone

nnnnnnnnn
Swipe Right
—)

Swipe Left
—

Swipe Swipe Swipe
Up Down Up

8/25

Representation in CCSKP:

X = left.down + down

X 222 left[k].down + down

https://www.figma.com/proto/Sep5Nl23CJiAxjjUfRNJV3/ICE-25?node-id=3-459&starting-point-node-id=3%3A459&scaling=scale-down&content-scaling=fixed&t=YAdpa1unhyiTvtnl-1

Syntax

Infinite set of names N: a,b, ...

Complementary names N: @,b, ... Labels, ranged over by a,/3, ...
Symbol for interactions 7

Infinite set of keys: k,m, ...

9/25

Syntax

Infinite set of names N: a,b, ...

Complementary names N: @,b, ... Labels, ranged over by a,/3, ...
Symbol for interactions 7

Infinite set of keys: k,m, ...

The set of processes is defined by the following syntax:

XY =0 | aX | okl X | X+Y | X|Y) | X\a

Notation:
keys(X): set of keys occurring in X
std(X): predicate true when X has no keys (X is said to be standard)

9/25

Semantics

Given by a Labelled Transition System (LTS).
Transitions are labelled by proof labels.

Examples of transitions:
o ld+d Y, l[k].d+d o a|bm % q|b
o ld+d U 14 + d[m)] e a|bm B g[k] | bjm)]

10/25

Semantics

The set of proof labels is defined by the following syntax:
0 ==valk] | v(lviAK], ’RVQX[kD

where)\ ranges over N U N and v, v; and v, range over strings of symbols
{|L7 ’R7 +L7 +R}

11/25

Semantics

Semantics is given by a combined LTS, made of the union of forward (—) and
backward (i~~) transition rules such as the following:

std(X) - pref std(X) < pref
a.X 28, alk].X alk] X s X
X4 X X X
2(0 k kpref 2(0) #k kpref
©)# alk].X & afk].X’ ©)# afk] X" VB alk]l.X —

Notation:

Given a combined transition t: X % X’, X and X’ are said the source and target of t.
Two transitions t; and t9 are connected if there exists a path (i.e., a sequence of
transitions) between the source of t; and the target of to.

11/25

Causality Relations

We can define three binary relations on

proof labels characterizing causality of
transitions:

e Dependence (x)
¢ Independence (v)
e Connectivity ()

Introduced by Aubert et al. in
“Independence and Causality in the Re-
versible Concurrent Setting” (2025). (x)

12/25

Connectivity Relation
Action
——— Al — A7
alk Y 6 6 alk
Parallel
[I —
a6y 7 1a6> 40 Y 15
Dependence Relation
Action
' A2
alk =6 6= alk]
Choice
0x0' R
c & S
ey d +40 x +56
Parallel
4 £(0)=#(6'
66 3 (6) =£(6") P
46 > 40 af =[50’
Synchronization
66, 61%6
a s, a s
[a® < (|00, [k Ok) {IL6L: Bk} > 146
00 0o ije{l2hit]

{1L61:|r62) < (I}, [r65)

Choice
017 6 —
cl & G
B Y gy ¢ HeO Y Hab
Synchronization
0 6, 0Y 6
sk T S
146 Y {|r.61.. R OR) {161 [rOR) Y a0
0o 06

G
(|61 R) ¥ (L. r65)

Independence Relation
Action
(emply)
Choice
010"
+46 1 +46"
Parallel
" £(0) # £(6"
016 (0) # £(6") »
[0 1 [46" a0 |76’
Synchronization
616, , 0,16
40 ¢ (160, [n0R) (100, 1x6e) 1 146
616 6,16}

_ ot &
(L6, r62) 1 (L8] [O5)

2
d

Causality Relations

Examples:

o +l[k] < +1d[m]:

e |Lalk] ¢ |[gb]m]:

12/25

Properties of Causality Relations

Main results proven in Section 3-4 of (x):

Theorem 1 (Characterization of connectivity of proof labels)

(i) Ifty: Xg & iy X and ty ¢ X, %2 =2 X5 are connected, then 01 Y 0,.
(ii) 1f 0, Y 05, then there exist t; : X7 Ly X{and ty : X, %2 2y X, such that t; and t,
are connected.

Theorem 2 (Complementarity of dependence and independence)

(l) If 91 L 92 then 81 Y 02.
(ll) If 91 > 92 then 91 Y 92.
(iii) If 6; Y 6, then either 61 ¢ 6, or 6; < 64, but not both.

13/25

Properties of Causality Relations

e Soundness of the causality relations

e Dependence and independence are usually defined by complementarity.

Separate axioms — easier to deal with them

13/25

Table of Contents

» Beluga Formalization

Beluga

Developed at the Complogic group at McGill
University, Canada

— Two-level system (LF level, computation
level)

— Encoding of object-level binding constructs :
through Higher-Order Abstract Syntax (HOAS) bel u ga

— Terms are paired with the contexts that give them meaning

— Curry-Howard isomorphism: proofs as recursive functional programs,
propositions as types

14/25

Higher-Order Abstract Syntax (HOAS)

Bound variables of the object language as arguments of meta-language functions

— a-renaming and capture-avoiding substitutions managed by the meta-language

— Focus on the development of the target system, no technical details of names
handling

Useful for encoding systems with a complex binders infrastructure (e.g.,
m-calculus)

15/25

Encoding of Syntax

Names, Keys, Labels and Processes

LF names: type =;
LE keyssl type = LF proc: type =

| o ooy | null: proc % 0
| @ tegs — Loy | pref: labels — proc — proc % A.X
’ | kpref: labels — keys — proc — proc 7 A[k].X
LEl lébeIS: type = | sum: proc — proc — proc % X+Y
| inp: names — labels | par: proc — proc — proc % XY
| euis wames — Labels | nu: (names — proc) — proc; % X\a

| tau: labels;

Examples:
eld+d — sum (pref 1 (pref d zero)) (pref d zero)

e a|bm — par (pref a zero) (kpref b m zero)
e (ab)\b — nu \b.(pref (out a) (pref (inp b) zero))
16/25

Encoding of Syntax

Terms are paired with contexts, containing assumptions. Contexts are classified
through schemas

We need a context of the form “x:names”:

Context declaration

schema ctx = names;

Consequence: we can define contextual processes [g F X], where g contains the
free variables occurring in the open process X.

16/25

Encoding of Semantics

Proof Labels

LF pr_lab: type =

| pr_base: labels — keys — pr_lab % alK]

| pr_suml: pr_lab — pr_lab % +1.0

| pr_sumr: pr_lab — pr_lab % +r0

| pr_parl: pr_lab — pr_lab % .0

| pr_parr: pr_lab — pr_lab % [r0

| pr_sync: pr_lab — pr_lab — pr_lab; % (|01, [rO2)

Examples:
e +il[k] — pr_suml (pr_base 1 k)
e |[gb[m] — pr.oparr (pr_base b m)

17/25

Encoding of Semantics

Forward and Backward Transitions (and auxiliary predicates)

LF key: pr_lab — keys — type = ... LF std: proc — type = ...

LF fstep: proc — pr_lab — proc — type =
| fs_pref: std X — fstep (pref A X) (pr_base A K) (kpref A K X)

LF bstep: proc — pr_lab — proc — type =
| bs_pref: std X — bstep (kpref A K X) (pr_base A K) (pref A X)

Idea: X % Y holds < (fstep X T Y) is inhabited

Analogously, causality relations are encoded by three type families conn, dep and indep.

17/25

Writing proofs in Beluga

Proofs in Beluga:
e Total (recursive) functions

e Proof term written by the user, without tactics: interactivity through
computation holes

e Lack of syntactic sugar for existentials and conjunctions
— additional type families to encode proof statements

18/25

Proof of Theorems 1 and 2: key insights and findings

e Basic properties of keys, proof labels and transitions to be encoded
— 15 additional lemmas
Examples: decidability of equality of keys, standard processes have no keys,
loop lemma (each transition can be reversed), ...

e Theorem 2 (complementarity): direct and uneventful encoding

19/25

Proof of Theorems 1 and 2: key insights and findings

Theorem 1 (connectivity):

e Some auxiliary lemmas are not required
Some statements have been slightly refined
Lengthy proofs, due to many nested pattern matchings

Low-level details to fill out — 20 additional lemmas

Non-constructive subcase — new proof strategy (+ 500 lines of code)

19/25

Example of proof in Beluga

Lemma: for all keys K, K does not occur in a standard process

rec no_key_in_std: (g:ctx) {K:[F keysl} [g - std X] — [g F notin K[] X] =
/ total d (no_key_in_std _ _ _ d) /
mlam K = fn d = case d of
| [g F std_null]l] = [g - not_null]
| [g F std_pref D] = let [g F NI
[g - not_pref NI
| [g = std_sum D1 D2] = let [g F N1] = no_key_in_std [F K] [g - D1] in
let [g F N2] = no_key_in_std [K] [g F D2] in [g F not_sum N1 N2]
| [g F std_par D1 D2] = let [g F N1] = no_key_in_std [F K] [g F D1] in
let [g - N2] = no_key_in_std [F K] [g F D2] in [g F not_par N1 N2]
| [g F std_nu \a.D] =
let [g,a:names ~ N] = no_key_in_std [K] [g,a:names - D] in
[g F not_nu \a.NJ];

no_key_in_std [K] [g F D] in

20/25

Table of Contents

» Conclusions

Evaluation

Technical overview:

e Size of the encoding: ~2000 lines of code
¢ Informal theorems and lemmas covered: 13
e Technical and auxiliary lemmas: 36

21/25

Evaluation

Benefits of using Beluga:
e HOAS — no handling of bound names

e Proof term matches the informal proof

Drawbacks of using Beluga:
e Lack of syntactic sugar for existentials and conjunctions

e Limited support for custom notation
e No abstraction mechanism for repeated proof patterns

Overall, other proof assistants might be a better fit for this system.

22/25

Conclusions

Results:
e First formalization of a reversible concurrent calculus
e Verified the correctness of Sections 3-4 of (x): causality relations are sound

¢ Filled out details and provided a new proof strategy

23/25

Future Work

¢ Journal paper version of (x), with more results formalized
e Covering subsystems of CCSK" (CCS, CCSK)

e Formalizing other (results about) reversible concurrent calculi, such as:
“An Axiomatic Theory for Reversible Computation” by Lanese et al.

24/25

Scan to access the
formalization repository:

Thank you for listening!
Any questions?

25/25

	Introduction
	CCSKP
	Beluga Formalization
	Conclusions

