
A Formalization of the Reversible
Concurrent Calculus CCSKP in Beluga

Gabriele Cecilia
Augusta University

20 June 2025

1/25

Table of Contents

▶ Introduction
▶ CCSKP

▶ Beluga Formalization
▶ Conclusions

Reversible Concurrent Calculi

Concurrent Calculi:
• Abstract models for concurrent systems
• Examples: CCS, π-calculus

Reversible Concurrent Calculi:
• Abstract models for concurrent systems in which every action can be undone
• Examples: CCSK, RCCS, CCSKP

2/25

Reversible Concurrent Calculi

Concurrent Calculi:
• Abstract models for concurrent systems
• Examples: CCS, π-calculus

Reversible Concurrent Calculi:
• Abstract models for concurrent systems in which every action can be undone
• Examples: CCSK, RCCS, CCSKP

2/25

Reversibility

• Accurate representation of reversible systems
• Computational efficiency: chips, debuggers, quantum computing, ...

3/25

Reversibility

• Accurate representation of reversible systems
• Computational efficiency: chips, debuggers, quantum computing, ...

3/25

Formalization

4/25

Formalization

5/25

Existing Concurrent Calculi Formalizations

Author, Year Publication Technique
Nesi 94 A Formalization of the Process Algebra CCS in HOL Named syntaxMelham 94 A Mechanized Theory of the π-Calculus in HOL Named syntaxHirschkoff 97 A Full Formalisation of π-Calculus Theory De Bruijnin the Calculus of Constructions indexesBengtson 09 Formalizing Process Calculi Nominal techniquesMiller et al. 99 Foundational Aspects of Syntax HOASHonsell et al. 01 π-Calculus in (Co)Inductive Type Theory HOAS

... but no reversible concurrent calculi formalizations.

6/25

Existing Concurrent Calculi Formalizations

Author, Year Publication Technique
Nesi 94 A Formalization of the Process Algebra CCS in HOL Named syntaxMelham 94 A Mechanized Theory of the π-Calculus in HOL Named syntaxHirschkoff 97 A Full Formalisation of π-Calculus Theory De Bruijnin the Calculus of Constructions indexesBengtson 09 Formalizing Process Calculi Nominal techniquesMiller et al. 99 Foundational Aspects of Syntax HOASHonsell et al. 01 π-Calculus in (Co)Inductive Type Theory HOAS

... but no reversible concurrent calculi formalizations.
6/25

Table of Contents

▶ Introduction
▶ CCSKP

▶ Beluga Formalization
▶ Conclusions

CCS with Keys and Proof labels (CCSKP)

CCSK: CCS with Keys
• A reversible extension of CCS
• Phillips & Ulidowski, 2007
• Processes and transitions enriched with communication keys

CCSKP: CCS with Keys and Proof labels
• A proved transition system for CCSK
• Aubert, 2024
• Semantics enriched with proof labels and causality relations

7/25

CCS with Keys and Proof labels (CCSKP)

CCSK: CCS with Keys
• A reversible extension of CCS
• Phillips & Ulidowski, 2007
• Processes and transitions enriched with communication keys

CCSKP: CCS with Keys and Proof labels
• A proved transition system for CCSK
• Aubert, 2024
• Semantics enriched with proof labels and causality relations

7/25

Example: Smartphone

8/25

https://www.figma.com/proto/Sep5Nl23CJiAxjjUfRNJV3/ICE-25?node-id=3-459&starting-point-node-id=3%3A459&scaling=scale-down&content-scaling=fixed&t=YAdpa1unhyiTvtnl-1

Example: Smartphone

Representation in CCS:

P1
def
= left.P2 + down.P3P2
def
= right.P1 + down.P4P3
def
= up.P1P4
def
= up.P2

8/25

https://www.figma.com/proto/Sep5Nl23CJiAxjjUfRNJV3/ICE-25?node-id=3-459&starting-point-node-id=3%3A459&scaling=scale-down&content-scaling=fixed&t=YAdpa1unhyiTvtnl-1

Example: Smartphone

Representation in CCSKP:

X = left.down + down

8/25

https://www.figma.com/proto/Sep5Nl23CJiAxjjUfRNJV3/ICE-25?node-id=3-459&starting-point-node-id=3%3A459&scaling=scale-down&content-scaling=fixed&t=YAdpa1unhyiTvtnl-1

Syntax

Definition
The set of processes is defined by the following syntax:

X, Y ::= 0 | α.X | α[k].X | X + Y | (X | Y) | X \ a

Notation:keys(X): set of keys occurring in Xstd(X): predicate true when X has no keys (X is said to be standard)

9/25

Syntax

Definition
The set of processes is defined by the following syntax:

X, Y ::= 0 | α.X | α[k].X | X + Y | (X | Y) | X \ a

Notation:keys(X): set of keys occurring in Xstd(X): predicate true when X has no keys (X is said to be standard)
9/25

Semantics

Given by a Labelled Transition System (LTS).
Transitions are labelled by proof labels.
Examples of transitions:

• l.d + d 7 +Ll[k]−−−→ l[k].d + d

• l.d + d 7 +Rd[m]−−−−→ l.d + d[m]

• a | b[m] 7 |Rb[m]
a | b

• a | b[m] 7 |La[k]−−−→ a[k] | b[m]

10/25

Semantics

Definition
The set of proof labels is defined by the following syntax:

θ ::= vα[k] | v⟨|Lv1λ[k], |Rv2λ[k]⟩

where λ ranges over N ∪ N and v, v1 and v2 range over strings of symbols
{|L, |R,+L,+R}.

11/25

Semantics
Definition

Semantics is given by a combined LTS, made of the union of forward (7−→) andbackward (7) transition rules such as the following:
std(X) pref

α.X 7 α[k]−−→ α[k].X

X 7 θ−→ X′
𝓀(θ) ̸= k kpref

α[k].X 7 θ−→ α[k].X′

std(X) pref
α[k].X 7 α[k] α.X

X′ 7 θ X𝓀(θ) ̸= k kpref
α[k].X′ 7 θ α[k].XNotation:Given a combined transition t: X 7 θ−→ X′, X and X′ are said the source and target of t.Two transitions t1 and t2 are connected if there exists a path (i.e., a sequence oftransitions) between the source of t1 and the target of t2.

11/25

Causality Relations

We can define three binary relations onproof labels characterizing causality oftransitions:
• Dependence (])
• Independence (ι)
• Connectivity (⋎)

Introduced by Aubert et al. in
“Independence and Causality in the Re-
versible Concurrent Setting” (2025). (⋆)
12/25

Causality Relations

12/25

Properties of Causality Relations

Main results proven in Section 3-4 of (⋆):
Theorem 1 (Characterization of connectivity of proof labels)

(i) If t1 : X1 7 θ1−→ X′
1 and t2 : X2 7 θ2−→ X′

2 are connected, then θ1 ⋎ θ2.(ii) If θ1 ⋎ θ2, then there exist t1 : X1 7 θ1−→ X′
1 and t2 : X2 7 θ2−→ X′

2 such that t1 and t2are connected.
Theorem 2 (Complementarity of dependence and independence)

(i) If θ1 ι θ2 then θ1 ⋎ θ2.(ii) If θ1] θ2 then θ1 ⋎ θ2.(iii) If θ1 ⋎ θ2 then either θ1 ι θ2 or θ1] θ2, but not both.
13/25

Properties of Causality Relations

• Soundness of the causality relations
• Dependence and independence are usually defined by complementarity.
Separate axioms→ easier to deal with them

13/25

Table of Contents

▶ Introduction
▶ CCSKP

▶ Beluga Formalization
▶ Conclusions

Beluga

Developed at the Complogic group at McGillUniversity, Canada
→ Two-level system (LF level, computationlevel)
→ Encoding of object-level binding constructsthrough Higher-Order Abstract Syntax (HOAS)
→ Terms are paired with the contexts that give them meaning
→ Curry-Howard isomorphism: proofs as recursive functional programs,propositions as types
14/25

Higher-Order Abstract Syntax (HOAS)

Bound variables of the object language as arguments of meta-language functions
→ α-renaming and capture-avoiding substitutions managed by the meta-language
→ Focus on the development of the target system, no technical details of nameshandling
Useful for encoding systems with a complex binders infrastructure (e.g.,
π-calculus)

15/25

Encoding of Syntax
Names, Keys, Labels and Processes

Examples:• l.d + d → sum (pref l (pref d zero)) (pref d zero)• a | b[m] → par (pref a zero) (kpref b m zero)• (a.b) \ b → nu \b.(pref (out a) (pref (inp b) zero))
16/25

Encoding of Syntax

Terms are paired with contexts, containing assumptions. Contexts are classifiedthrough schemas
We need a context of the form “x:names”:

Context declaration

schema ctx = names;

Consequence: we can define contextual processes [g ⊢ X], where g contains thefree variables occurring in the open process X.

16/25

Encoding of Semantics

Proof Labels

Examples:
• +Ll[k] → pr suml (pr base l k)

• |Rb[m] → pr parr (pr base b m)

17/25

Encoding of Semantics

Forward and Backward Transitions (and auxiliary predicates)
LF key: pr_lab → keys → type = ... LF std: proc → type = ...

LF fstep: proc → pr_lab → proc → type =

| fs_pref: std X → fstep (pref A X) (pr_base A K) (kpref A K X)

...

LF bstep: proc → pr_lab → proc → type =

| bs_pref: std X → bstep (kpref A K X) (pr_base A K) (pref A X)

...

Idea: X 7 θ−→ Y holds ⇔ (fstep X T Y) is inhabited
Analogously, causality relations are encoded by three type families conn, dep and indep.
17/25

Writing proofs in Beluga

Proofs in Beluga:
• Total (recursive) functions
• Proof term written by the user, without tactics: interactivity throughcomputation holes
• Lack of syntactic sugar for existentials and conjunctions
→ additional type families to encode proof statements

18/25

Proof of Theorems 1 and 2: key insights and findings

• Basic properties of keys, proof labels and transitions to be encoded
→ 15 additional lemmas
Examples: decidability of equality of keys, standard processes have no keys,loop lemma (each transition can be reversed), . . .

• Theorem 2 (complementarity): direct and uneventful encoding

19/25

Proof of Theorems 1 and 2: key insights and findings

Theorem 1 (connectivity):
• Some auxiliary lemmas are not required
• Some statements have been slightly refined
• Lengthy proofs, due to many nested pattern matchings
• Low-level details to fill out → 20 additional lemmas
• Non-constructive subcase → new proof strategy (+ 500 lines of code)

19/25

Example of proof in Beluga
Lemma: for all keys K, K does not occur in a standard process

rec no_key_in_std: (g:ctx) {K:[⊢ keys]} [g ⊢ std X] → [g ⊢ notin K[] X] =

/ total d (no_key_in_std _ _ _ d) /

mlam K ⇒ fn d ⇒ case d of
| [g ⊢ std_null] ⇒ [g ⊢ not_null]

| [g ⊢ std_pref D] ⇒ let [g ⊢ N] = no_key_in_std [⊢ K] [g ⊢ D] in
[g ⊢ not_pref N]

| [g ⊢ std_sum D1 D2] ⇒ let [g ⊢ N1] = no_key_in_std [⊢ K] [g ⊢ D1] in
let [g ⊢ N2] = no_key_in_std [⊢ K] [g ⊢ D2] in [g ⊢ not_sum N1 N2]

| [g ⊢ std_par D1 D2] ⇒ let [g ⊢ N1] = no_key_in_std [⊢ K] [g ⊢ D1] in
let [g ⊢ N2] = no_key_in_std [⊢ K] [g ⊢ D2] in [g ⊢ not_par N1 N2]

| [g ⊢ std_nu \a.D] ⇒
let [g,a:names ⊢ N] = no_key_in_std [⊢ K] [g,a:names ⊢ D] in
[g ⊢ not_nu \a.N];

20/25

Table of Contents

▶ Introduction
▶ CCSKP

▶ Beluga Formalization
▶ Conclusions

Evaluation

Technical overview:

• Size of the encoding: ∼2000 lines of code
• Informal theorems and lemmas covered: 13
• Technical and auxiliary lemmas: 36

21/25

Evaluation

Benefits of using Beluga:
• HOAS→ no handling of bound names
• Proof term matches the informal proof

Drawbacks of using Beluga:
• Lack of syntactic sugar for existentials and conjunctions
• Limited support for custom notation
• No abstraction mechanism for repeated proof patterns

Overall, other proof assistants might be a better fit for this system.

22/25

Conclusions

Results:

• First formalization of a reversible concurrent calculus
• Verified the correctness of Sections 3-4 of (⋆): causality relations are sound
• Filled out details and provided a new proof strategy

23/25

Future Work

• Journal paper version of (⋆), with more results formalized
• Covering subsystems of CCSKP (CCS, CCSK)
• Formalizing other (results about) reversible concurrent calculi, such as:
“An Axiomatic Theory for Reversible Computation” by Lanese et al.

24/25

Thank you for listening!
Any questions?

Scan to access the
formalization repository:

25/25

	Introduction
	CCSKP
	Beluga Formalization
	Conclusions

