A Formalization of the Reversible Concurrent Calculus CCSK^P in Beluga **Gabriele Cecilia Augusta University** 20 June 2025

ICE 2025

Table of Contents

▶ Introduction

► CCSK^F

▶ Beluga Formalization

▶ Conclusions

Reversible Concurrent Calculi

Concurrent Calculi:

- Abstract models for concurrent systems
- Examples: CCS, π -calculus

Reversible Concurrent Calculi

Concurrent Calculi:

- Abstract models for concurrent systems
- Examples: CCS, π -calculus

Reversible Concurrent Calculi:

- Abstract models for concurrent systems in which every action can be undone
- Examples: CCSK, RCCS, CCSK^P

Reversibility

Reversibility

- Accurate representation of reversible systems
- Computational efficiency: chips, debuggers, quantum computing, ...

Formalization

How one line of code caused a \$60 million loss

 $60,\!000$ people lost full phone service, half of AT&T's network was down, and 500 airline flights were delayed

NOV 13, 2023

On January 15th, 1990, AT&T's New Jersey operations center detected a widespread system malfunction, shown by a plethora of red warnings on their network display.

Despite attempts to rectify the situation, the network remained compromised for 9 hours, leading to a 50% failure rate in call connections.

AT&T lost over \$60 million as a result with over 60,000 of Americans left with fully disconnected phones.

How a single line of code brought down a half-billion euro rocket launch

It's Tuesday, June 4th, 1996, and the European Space Agency is set to launch its new Ariane 5 rocket for the first time. This is the culmination of a decade of design, testing and a budget spending billions of euros.

Formalization

Mechanized Metatheory for the Masses: The Poplmark Challenge

Brian E. Aydemir¹, Aaron Bohannon¹, Matthew Fairbairn², J. Nathan Foster¹, Benjamin C. Pierce¹, Peter Sewell², Dimitrios Vytiniotis¹, Geoffrey Washburn¹, Stephanie Weirich¹, and Steve Zdancewic¹

 Department of Computer and Information Science, University of Pennsylvania
 Computer Laboratory, University of Cambridge

Computer Laboratory, University of Cambridge

Abstract. How close are we to a world where every paper on programming languages is accompanied by an electronic appendix with machine-checked proofs?

Existing Concurrent Calculi Formalizations

Author, Year	Publication	Technique
Nesi 94	A Formalization of the Process Algebra CCS in HOL	Named syntax
Melham 94	A Mechanized Theory of the π -Calculus in HOL	Named syntax
Hirschkoff 97	A Full Formalisation of π -Calculus Theory	De Bruijn
	in the Calculus of Constructions	indexes
Bengtson 09	Formalizing Process Calculi	Nominal techniques
Miller et al. 99	Foundational Aspects of Syntax	HOAS
Honsell et al. 01	π -Calculus in (Co)Inductive Type Theory	HOAS

Existing Concurrent Calculi Formalizations

Author, Year	Publication	Technique
Nesi 94	A Formalization of the Process Algebra CCS in HOL	Named syntax
Melham 94	A Mechanized Theory of the π -Calculus in HOL	Named syntax
Hirschkoff 97	A Full Formalisation of π -Calculus Theory	De Bruijn
	in the Calculus of Constructions	indexes
Bengtson 09	Formalizing Process Calculi	Nominal techniques
Miller et al. 99	Foundational Aspects of Syntax	HOAS
Honsell et al. 01	π -Calculus in (Co)Inductive Type Theory	HOAS

^{...} but no reversible concurrent calculi formalizations.

Table of Contents

- Introduction
- ► CCSK^P

- ▶ Beluga Formalization
- ▶ Conclusions

CCS with Keys and Proof labels (CCSK^P)

CCSK: CCS with Keys

- A reversible extension of CCS
- Phillips & Ulidowski, 2007
- Processes and transitions enriched with communication keys

CCS with Keys and Proof labels (CCSK^P)

CCSK: CCS with Keys

- A reversible extension of CCS
- Phillips & Ulidowski, 2007
- Processes and transitions enriched with communication keys

CCSK^P: CCS with Keys and Proof labels

- A proved transition system for CCSK
- Aubert, 2024
- Semantics enriched with proof labels and causality relations

Example: Smartphone

Example: Smartphone

Representation in CCS:

$$\begin{array}{l} \mathsf{P}_1 \stackrel{\mathsf{def}}{=} \mathsf{left.P}_2 + \mathsf{down.P}_3 \\ \mathsf{P}_2 \stackrel{\mathsf{def}}{=} \mathsf{right.P}_1 + \mathsf{down.P}_4 \\ \mathsf{P}_3 \stackrel{\mathsf{def}}{=} \mathsf{up.P}_1 \\ \mathsf{P}_4 \stackrel{\mathsf{def}}{=} \mathsf{up.P}_2 \end{array}$$

Example: Smartphone

Representation in CCSK^P:

X = left.down + down

 $X \xrightarrow{\longleftarrow} left[k].down + down$

Syntax

- Infinite set of names N: a,b,\ldots Complementary names $\overline{\mathbb{N}}$: $\overline{a},\overline{b},\ldots$ Symbol for interactions τ
- Infinite set of keys: k,m, ...

Syntax

- Infinite set of names N: a,b,\ldots Complementary names $\overline{\mathbb{N}}$: $\overline{a},\overline{b},\ldots$ Symbol for interactions τ
- Infinite set of keys: k,m, ...

Definition

The set of processes is defined by the following syntax:

$$X, Y ::= \mathbf{0} \mid \alpha.X \mid \alpha[\mathbf{k}].X \mid X + Y \mid (X \mid Y) \mid X \setminus a$$

Notation:

keys(X): set of keys occurring in X

std(X): predicate true when X has no keys (X is said to be standard)

Semantics

Given by a Labelled Transition System (LTS).

Transitions are labelled by proof labels.

Examples of transitions:

•
$$l.d + d \stackrel{+_L l[k]}{\longmapsto} l[k].d + d$$

•
$$l.d + d \stackrel{+_Rd[m]}{\longmapsto} l.d + d[m]$$

•
$$a \mid b[m] \xrightarrow{|_R b[m]} a \mid b$$

•
$$a \mid b[m] \xrightarrow{|_L a[k]} a[k] \mid b[m]$$

Semantics

Definition

The set of proof labels is defined by the following syntax:

$$\theta ::= v\alpha[k] \quad | \quad v\langle|_{\mathsf{L}}v_1\lambda[k], |_{\mathsf{R}}v_2\overline{\lambda}[k]\rangle$$

where λ ranges over $N \cup \overline{N}$ and v, v_1 and v_2 range over strings of symbols $\{|L, R, +L, +R\}$.

Semantics

Definition

Semantics is given by a combined LTS, made of the union of forward (\longmapsto) and backward (\leadsto) transition rules such as the following:

$$\operatorname{std}(X) \xrightarrow[\alpha:X]{\alpha[k]} \alpha[k].X \operatorname{pref} \operatorname{std}(X) \xrightarrow[\alpha:k]{\alpha[k]} \alpha[k].X \xrightarrow{\alpha[k]} \alpha.X \xrightarrow{pref}$$

$$\mathscr{R}(\theta) \neq k \ \frac{X \xrightarrow{\theta} X'}{\alpha[k].X \xrightarrow{\theta} \alpha[k].X'} \ \mathsf{kpref} \qquad \qquad \mathscr{R}(\theta) \neq k \ \frac{X' \xrightarrow{\theta} X}{\alpha[k].X' \xrightarrow{\theta} \alpha[k].X} \ \underline{\mathsf{kpref}}$$

Notation:

Given a combined transition $t: X \xrightarrow{\beta} X', X$ and X' are said the *source* and *target* of t. Two transitions t_1 and t_2 are *connected* if there exists a *path* (i.e., a sequence of transitions) between the source of t_1 and the target of t_2 .

Causality Relations

We can define three binary relations on proof labels characterizing causality of transitions:

- Dependence (×)
- Independence (ι)
- Connectivity (↑)

Introduced by Aubert et al. in "Independence and Causality in the Reversible Concurrent Setting" (2025). (*)

Causality Relations

Examples:

• $+_{\mathbf{L}}l[k] \times +_{\mathbf{L}}d[m]$:

• $|_{\mathbf{L}}a[k] \iota |_{\mathbf{R}}b[m]$:

Properties of Causality Relations

Main results proven in Section 3-4 of (\star) :

Theorem 1 (Characterization of connectivity of proof labels)

- (i) If $t_1: X_1 \xrightarrow{\theta_1} X_1'$ and $t_2: X_2 \xrightarrow{\theta_2} X_2'$ are connected, then $\theta_1 \Upsilon \theta_2$.
- (ii) If $\theta_1 \\cope \theta_2$, then there exist $t_1 : X_1 \xrightarrow{\theta_1} X_1'$ and $t_2 : X_2 \xrightarrow{\theta_2} X_2'$ such that t_1 and t_2 are connected.

Theorem 2 (Complementarity of dependence and independence)

- (i) If $\theta_1 \iota \theta_2$ then $\theta_1 \Upsilon \theta_2$.
- (ii) If $\theta_1 \times \theta_2$ then $\theta_1 \Upsilon \theta_2$.
- (iii) If $\theta_1 \ \ \theta_2$ then either $\theta_1 \ \iota \ \theta_2$ or $\theta_1 \times \theta_2$, but not both.

Properties of Causality Relations

- Soundness of the causality relations
- Dependence and independence are usually defined by complementarity.
 Separate axioms → easier to deal with them

Table of Contents

- ▶ Introduction
- ► CCSK^F
- ► Beluga Formalization
- Conclusions

Beluga

Developed at the Complogic group at McGill University, Canada

- ightarrow Two-level system (LF level, computation level)
- → Encoding of object-level binding constructs through Higher-Order Abstract Syntax (HOAS)

- → Terms are paired with the contexts that give them meaning
- ightarrow Curry-Howard isomorphism: proofs as recursive functional programs, propositions as types

Higher-Order Abstract Syntax (HOAS)

Bound variables of the object language as arguments of meta-language functions

- $\rightarrow \alpha\text{-renaming}$ and capture-avoiding substitutions managed by the meta-language
- \rightarrow Focus on the development of the target system, no technical details of names handling

Useful for encoding systems with a complex binders infrastructure (e.g., π -calculus)

Encoding of Syntax

Names, Keys, Labels and Processes

```
LF names: type =;
                                  LF proc: type =
LF keys: type =
                                                                                             % 0
                                     | null: proc
  | z: keys
                                     \mid pref: labels \rightarrow proc \rightarrow proc
                                                                                            % A.X
  ls: keys \rightarrow keys;
                                     | kpref: labels \rightarrow keys \rightarrow proc \rightarrow proc % A[k].X
LF labels: type =
                                                                                   % X+Y
                                     \mid sum: proc \rightarrow proc \rightarrow proc
   | inp: names \rightarrow labels
                                                                                  % X | Y
                                     | par: proc \rightarrow proc \rightarrow proc
  \vdash out: names \rightarrow labels
                                     | nu: (names \rightarrow proc) \rightarrow proc;
                                                                                             % X\a
  | tau: labels;
```

Examples:

16/25

```
\begin{array}{lll} \bullet \ l.d+d & \to & \text{sum (pref 1 (pref d zero)) (pref d zero)} \\ \bullet \ a \mid b[m] & \to & \text{par (pref a zero) (kpref b m zero)} \\ \bullet \ (\overline{a}.b) \setminus b & \to & \text{nu } \backslash b. (\text{pref (out a) (pref (inp b) zero)}) \end{array}
```

Encoding of Syntax

Terms are paired with contexts, containing assumptions. Contexts are classified through schemas

We need a context of the form "x:names":

Context declaration

```
schema ctx = names;
```

<u>Consequence:</u> we can define *contextual* processes $[g \vdash X]$, where g contains the free variables occurring in the open process X.

Encoding of Semantics

```
 \begin{array}{c} \textbf{LF pr\_lab: type =} \\ | \ pr\_base: \ labels \rightarrow \ keys \rightarrow \ pr\_lab & \% \ \alpha[k] \\ | \ pr\_suml: \ pr\_lab \rightarrow \ pr\_lab & \% \ +_{L}\theta \\ | \ pr\_sumr: \ pr\_lab \rightarrow \ pr\_lab & \% \ +_{R}\theta \\ | \ pr\_parl: \ pr\_lab \rightarrow \ pr\_lab & \% \ |_{L}\theta \\ | \ pr\_parr: \ pr\_lab \rightarrow \ pr\_lab & \% \ |_{R}\theta \\ | \ pr\_sync: \ pr\_lab \rightarrow \ pr\_lab & \% \ |_{R}\theta \\ | \ pr\_sync: \ pr\_lab \rightarrow \ pr\_lab & \% \ |_{R}\theta_2\rangle \\ \end{array}
```

Examples:

- ullet +_L l[k] o pr_suml (pr_base 1 k)
- $|_{\mathbb{R}}b[m] \rightarrow \text{pr_parr (pr_base b m)}$

Encoding of Semantics

Forward and Backward Transitions (and auxiliary predicates)

```
LF key: pr_lab \rightarrow keys \rightarrow type = \dots LF std: proc \rightarrow type = \dots LF fstep: proc \rightarrow pr_lab \rightarrow proc \rightarrow type =  | fs_pref: std X \rightarrow fstep (pref A X) (pr_base A K) (kpref A K X) \dots \dots \dots \text{LF bstep: } <math>proc \rightarrow pr_lab \rightarrow proc \rightarrow type =  | bs_pref: std X \rightarrow bstep (kpref A K X) (pr_base A K) (pref A X) \dots \d
```

Analogously, causality relations are encoded by three type families conn, dep and indep.

Writing proofs in Beluga

Proofs in Beluga:

- Total (recursive) functions
- Proof term written by the user, without tactics: interactivity through computation holes
- Lack of syntactic sugar for existentials and conjunctions
 - \rightarrow additional type families to encode proof statements

Proof of Theorems 1 and 2: key insights and findings

- \bullet Basic properties of keys, proof labels and transitions to be encoded \rightarrow 15 additional lemmas
 - <u>Examples:</u> decidability of equality of keys, standard processes have no keys, loop lemma (each transition can be reversed), ...
- Theorem 2 (complementarity): direct and uneventful encoding

Proof of Theorems 1 and 2: key insights and findings

Theorem 1 (connectivity):

- Some auxiliary lemmas are not required
- Some statements have been slightly refined
- Lengthy proofs, due to many nested pattern matchings
- Low-level details to fill out \rightarrow 20 additional lemmas
- ullet Non-constructive subcase o new proof strategy (+ 500 lines of code)

Example of proof in Beluga

Lemma: for all keys K, K does not occur in a standard process

```
rec no_key_in_std: (g:ctx) \{K: [\vdash keys]\}\ [g \vdash std X] \rightarrow [g \vdash notin K[] X] =
  / total d (no_key_in_std _ _ _ d) /
mlam K \Rightarrow fn d \Rightarrow case d of
  \mid [g \vdash std\_null] \Rightarrow [g \vdash not\_null]
  | [g \vdash std\_pref D] \Rightarrow let [g \vdash N] = no\_key\_in\_std [\vdash K] [g \vdash D] in
     [g ⊢ not_pref N]
  | [g \vdash std_sum D1 D2] \Rightarrow let [g \vdash N1] = no_key_in_std [\vdash K] [g \vdash D1] in
     let [g \vdash N2] = no\_kev\_in\_std [\vdash K] [g \vdash D2] in [g \vdash not\_sum N1 N2]
  | [g \vdash std\_par D1 D2] \Rightarrow let [g \vdash N1] = no\_kev\_in\_std [\vdash K] [g \vdash D1] in
     let [g \vdash N2] = no\_kev\_in\_std [\vdash K] [g \vdash D2] in [g \vdash not\_par N1 N2]
  \mid [g \vdash std_nu \land a.D] \Rightarrow
     let [g,a:names ⊢ N] = no_key_in_std [⊢ K] [g,a:names ⊢ D] in
     [g \vdash not_nu \land a.N];
```

Table of Contents

- ▶ Introduction
- ► CCSK^F

- Beluga Formalization
- **▶** Conclusions

Evaluation

Technical overview:

- Size of the encoding: \sim 2000 lines of code
- Informal theorems and lemmas covered: 13
- Technical and auxiliary lemmas: 36

Evaluation

Benefits of using Beluga:

- ullet HOAS o no handling of bound names
- Proof term matches the informal proof

Drawbacks of using Beluga:

- Lack of syntactic sugar for existentials and conjunctions
- Limited support for custom notation
- No abstraction mechanism for repeated proof patterns

Overall, other proof assistants might be a better fit for this system.

Conclusions

Results:

- First formalization of a reversible concurrent calculus
- Verified the correctness of Sections 3-4 of (*): causality relations are sound
- Filled out details and provided a new proof strategy

Future Work

- Journal paper version of (*), with more results formalized
- Covering subsystems of CCSK^P (CCS, CCSK)
- Formalizing other (results about) reversible concurrent calculi, such as: "An Axiomatic Theory for Reversible Computation" by Lanese et al.

Scan to access the formalization repository:

Thank you for listening! Any questions?

