A Beluga Formalization of the
Harmony Lemma in the 7-Calculus

Gabriele Cecilia
Joint work with Alberto Momigliano
Universita degli Studi di Milano
8 July 2024

i -]] ~n

Table of Contents

» Introduction

2/35

The POPLMark Challenge (2005)

“How close are we to a world where every paper on programming languages is
accompanied by an electronic appendix with machine-checked proofs?”

3/35

The POPLMark Challenge (2005)

“How close are we to a world where every paper on programming languages is
accompanied by an electronic appendix with machine-checked proofs?”

Challenges about the formalization of the metatheory of programming
languages

Objectives: measure progress, find the best practices to address typical
issues, improve proof assistants, stimulate collaboration

New benchmarks: POPLMark Reloaded (2019), Concurrent Calculi
Formalisation Benchmark (2024)

3/35

The Concurrent Calculi Formalisation Benchmark (2024)

Set of challenges about the formalization of concurrent systems
e Objectives: same as POPLMark, but focused on concurrency
e Three issues:

i. Linearity

ii. Scope extrusion — scope of restricted names may change over time
iii. Coinductive reasoning

4/35

The Concurrent Calculi Formalisation Benchmark (2024)

Set of challenges about the formalization of concurrent systems
e Objectives: same as POPLMark, but focused on concurrency
e Three issues:
i. Linearity
ii. Scope extrusion — scope of restricted names may change over time
iii. Coinductive reasoning

Second challenge of the CCFB: formalizing the Harmony Lemma for the 7-calculus.
Equivalence of two semantics which treat scope extrusion differently

4/35

Table of Contents

» The 7-Calculus and the Harmony Lemma

5/35

General features of the m-calculus

Process calculus: model for concurrent systems.

6/35

General features of the m-calculus

Process calculus: model for concurrent systems.

¢ Introduced by R.Milner, J. Parrow and D. Walker in 1992.
e Double nature of names: means of communication, data exchanged.

¢ |t models processes whose interconnections change as they interact.

6/35

Example of process interaction:

7/35

Before interaction

Server

Client

After interaction

l
\
=

Printer

Server

Client

l |
S 7

Printer

Syntax

We assume the existence of a countably infinite set of names.

In the CCFB.2, the set of processes is defined by the following syntax:

P.Q:= 0 | x(y)P | 2v.P | (P|Q) | (vx)P

8/35

Syntax

We assume the existence of a countably infinite set of names.

In the CCFB.2, the set of processes is defined by the following syntax:
P.Q == 0 | x(y).P | xy.P [(P[Q) | (vx)P

Notation:
fn(P): set of free names in P
bn(P): set of bound names in P

8/35

Semantics

Process behaviour is defined through an operational semantics.

In the CCFB.2, two different approaches:

9/35

Semantics

Process behaviour is defined through an operational semantics.

In the CCFB.2, two different approaches:

e Reduction semantics: congruence + reduction

e Labelled Transition System (LTS) semantics: actions + transitions

9/35

Reduction Semantics

We define the congruence relation = as the smallest relation over processes,
closed under compatibility and equivalence laws, satisfying the following axioms:

PAR-Assoc PAr-UNIT PAr-CoMMm

PI(QIR) = (P|Q)|R Plo=P P[0=0]P

SR
Sc-EXT-ZERO (;(¢Xan(5)R Sc-ExT-RES

(vx)0 =0 (vx)P|Q = (vx)(P| Q) (vx)(vy)P = (vy)(vx)P

10/35

Reduction Semantics

We define the reduction relation — as the smallest relation over processes
satisfying the following rules:

R-Com ;{EAB
xy.P|x(2).0 — P|Q{y/z} P|R — Q|R

R-RES R-STRUCT

P—Q P=P P’—>Q’ Q’EQ

(vx)P — (vx)Q P—0Q

11/35

Reduction Semantics

We define the reduction relation — as the smallest relation over processes
satisfying the following rules:

R-PAR
R-COM P — O
Xy.P|x(z).Q — P|Q{y/z} P|R — Q|R
R-RES R-STRUCT
P—Q P=P P’—>Q’ Q/EQ

(vx)P — (vx)Q P—0Q

11/35

Reduction Semantics

. Definton
We define the reduction relation — as the smallest relation over processes
satisfying the following rules:

R-Com IE{_EA(P;
xy.P[x(2).Q — P|Q{y/z} P|R — Q|R

R-RES R-STRUCT

P—Q P=P P'—>Q' Q’EQ

(vx)P — (vx)Q P—0Q

11/35

LTS Semantics

The set of actions is defined by the following syntax:

ax=x(y) | xy | X(y) | T

12/35

LTS Semantics

The set of actions is defined by the following syntax:
a = x@y) | xy | x(y) | T

Notation:

fn(«): set of free names in «
bn(a): set of bound names in «
n(«): set of names in «

12/35

LTS Semantics

(Definiton |
We define the transition relation - — - as the smallest relation which satisfies the
following rules:

S-PAR-L
S-IN S-Out PSP bn(a) N fn(Q) =0
x(z).p X p y.p) P Hlo = Fle
PP 26 7 PSP z¢n
S-Com-L — % ¢ S-REs a £ nle)
PIQ5 P IQ{y/z wz)P = (wz)P
PEP z#x P p X ¢
S-OPEN) S-CLOSE-L e ¢ ¢
(vz)P 22 P/ P|Q = (vz)(P'|Q)

13/35

LTS Semantics

(Definiton |
We define the transition relation - — - as the smallest relation which satisfies the
following rules:

S-PAR-L
S-IN S-Out PSP bn(a) N fn(Q) =0
x(z).p X p gy.p) P Hlo = Fle
PP 26 7 PSP z¢n
S-Com-L — % ¢ S-REs a £ nle)
PIQ5 P IQ{y/z wz)P = (wz)P
PEP z#x P p X ¢
S-OPEN) S-CLOSE-L e ¢ ¢
(vz)P 22 P/ P|Q = (vz)(P'|Q)

13/35

LTS Semantics

We define the transition relation - — - as the smallest relation which satisfies the
following rules:

S-PAR-L
S-IN S-Out PSP bn(a)Nf(Q) =0
x(z).p *25 p xy.P 2 P PIQ = PO
P p 22, o PAXP zén(a
S-Com-L — 4 4 S-RES @ : (/ :
PIQ 5 P|Q{y/2)} CaE = (B
PEP z4x pXp X g
S-OPEN =7 S-CLOSE-L — ¢ ; Q,
(vz)P =% P P|Q — (vz)(P'| Q)

13/35

LTS Semantics

We define the transition relation - — - as the smallest relation which satisfies the
following rules:

S-PAR-L
S-IN 5-Our PP bn(a)Nf(Q) =0
x(z).PﬂP Xy.P;};P PIQ % P|Q
pXp X, o PSP zé¢dn
S-Com-L = Q Q S-REsS 5 ¢ (a)
Pl0 5 P 0{y/7} V2P & (v2)P
PE P z4x pX p X9, o
S-OPEN x(z) S-CLOSE-L P Q Q
(vz)P — P P|Q = (v2)(P'| Q)

13/35

The Harmony Lemma

Harmony Lemma: the two semantics are equivalent

Theorem 1 (T-transition implies reduction)

P 5 Q implies P — Q.

Theorem 2 (Reduction implies T-transition)
P — Q implies the existence of a @’ suchthat P = Q' and Q = Q.

14/35

The Harmony Lemma

Harmony Lemma: the two semantics are equivalent

“Rather than giving the whole proof, we explain the strategy and invite the reader
to check some of the details” [Sangiorgi & Walker]

— complete the mathematical proof, filling out the details

14/35

Mathematical proof of the Harmony Lemma

Ingredients:

e 8 technical lemmas (substitutions, free/bound names)

Lemma (Names in output transitions)

IfP % P, then x,y € fn(P).

15/35

Mathematical proof of the Harmony Lemma

Ingredients:
e Some lemmas about rewriting

Lemma (Rewriting of processes involved in input transitions)

If Q X—(Y)—> Q' then there exists a finite (possibly empty) set of names wy, ..., w,
(withx,y # w; Vi = 1, ..., n) and two processes R, § such that

Q= (vwy)...(uwy)(x(2).R|S) and Q = (vwy)...(vw,)(R | S).

15/35

Mathematical proof of the Harmony Lemma

Ingredients:

e A congruence-as-bisimulation lemma

Lemma (Congruence is a bisimulation)

If P=Qand P % P/, then there exists a process Q' such that Q = @’ and P’ = Q'.

P
Ja
P/

= 0

15/35

Mathematical proof of the Harmony Lemma
Ingredients:

e A congruence-as-bisimulation lemma

Lemma (Congruence is a bisimulation)

If P=Qand P> P/, then there exists a process Q' such that Q = @’ and P’ = Q'.

= 0

P
Ja
P o=

Proofs are straightforward (sometimes long) inductions.

I
I
e
I

v

Q/

15/35

Table of Contents

» Beluga Mechanization

16/35

Mechanization of the w-calculus

Complex aspects of the 7-calculus mechanization:

e Binding constructs — a-equivalence, substitutions

e Scope extrusion — a-equivalence and variable conventions

17/35

Some previous 7-calculus formalizations

] Author, Year

Publication

Technique

Melham 94

A Mechanized Theory of the w-Calculus in HOL

Named syntax

Hirschkoff 97

A Full Formalisation of 7-Calculus Theory
in the Calculus of Constructions

De Bruijn
indexes

Bengtson et al. 09

Formalizing the 7-Calculus using Nominal Logic

Nominal techniques

Castro et al. 19

Engineering the Meta-Theory of Session Types

Locally nameless

Miller et al. 99 Foundational Aspects of Syntax HOAS
Despeyroux 00 A Higher-Order Specification of the 7-Calculus HOAS
Honsell et al. 01 m-Calculus in (Co)Inductive Type Theory HOAS

18/35

Why HOAS?

a-renaming and capture-avoiding substitutions are implemented by the
meta-language

— Side conditions in definitions and technical lemmas are automatically achieved

19/35

Why HOAS?

a-renaming and capture-avoiding substitutions are implemented by the
meta-language

— Side conditions in definitions and technical lemmas are automatically achieved
e Cleaner definitions and proofs
e The user can focus on the development of the target system

With other techniques, most of the effort is devoted to names handling (e.g.
Hirschkoff, 75%)

19/35

Why Beluga?

Specifically designed for reasoning about formal systems

— Encoding of object-level binding constructs through HOAS
— Two-level system (LF-level, computation-level)

— Curry-Howard isomorphism: proofs as recursive functional programs,
propositions as types

20/35

Encoding of the Syntax

LF types for names and processes:

LF names: type = ;

Processes

LF proc: type =

| p_zero: proc 0 inactive

| p_in: names — (names — proc) — proc x(y).P input

| p_out: names — names — proc — proc xy.P output

| p_par: proc — proc — proc P| Q parallel composition
| p_res: (names — proc) — proc (vx)P restriction

)

Example (encoding of (vx)P): p_res \x. (P x)
21/35

Encoding of the Syntax

Terms are paired with contexts, containing assumptions. Contexts are classified
through schemas

We need a context of the form “x:names”:

Context declaration

schema ctx = names;

21/35

Encoding of the Syntax

Terms are paired with contexts, containing assumptions. Contexts are classified
through schemas

We need a context of the form “x:names”:

Context declaration

schema ctx = names;

Consequence: we can define contextual processes [g F P], where g contains the
free variables occurring in the open process P.

21/35

Encoding of the Reduction Semantics

Congruence and Reduction

LF cong: proc — proc — type =
| sc_ext_par: cong ((p_res P) p_par Q) (p_res (\x.((P x) p_par Q)))

LF red: proc — proc — type =
| r_res: ({x:names} red (P x) (Q x)) — red (p_res P) (p_res Q)

x ¢ fn(0Q)
(vx)P | Q = (vx)(P| Q)

e There is no side condition in rule sc_ext_par
¢ Universal quantification {x:names} is used to descend into binders

Sc-ExXT-PAR

22/35

Encoding of the LTS Semantics (Honsell et al.)

Actions and Transition

LF f_act: type = LF b_act: type =
| f_tau: f_act | b_in: names — b_act
| f_out: names — names — f_act | b_out: names — b_act

e Two types for free and bound actions; no bound name in bound actions.

23/35

Encoding of the LTS Semantics (Honsell et al.)

Actions and Transition

LF f_act: type = LF b_act: type =
| £f_tau: f_act | b_in: names — b_act
| f_out: names — names — f_act | b_out: names — b_act

LF fstep: proc — f_act — proc — type =
| £fs_coml: fstep P (f_out X Y) P’ — bstep Q (b_in X) Q’
— fstep (P p_par Q) f_tau (P’ p_par (Q’ Y))
| fs_closel: bstep P (b_out X) P’ — bstep Q (b_in X) Q’
— fstep (P p_par Q) f_tau (p_res \z.((P’ z) p_par (Q’ z)))

e The result of a free transition is a process.

23/35

Encoding of the LTS Semantics (Honsell et al.)

Actions and Transition

LF f_act: type = LF b_act: type =
| £f_tau: f_act | b_in: names — b_act
| f_out: names — names — f_act | b_out: names — b_act

LF fstep: proc — f_act — proc — type =
| fs_coml: fstep P (f_out X Y) P’ — bstep Q (b_in X) Q’
— fstep (P p_par Q) f_tau (P’ p_par (Q’ Y))
| fs_closel: bstep P (b_out X) P’ — bstep Q (b_in X) Q’
— fstep (P p_par Q) f_tau (p_res \z.((P’ z) p_par (Q’ z)))
and bstep: proc — b_act — (names — proc) — type =
| bs_in: bstep (p_in X P) (b_in X) P

e The result of a bound transition is a process abstraction.
23/35

Writing proofs in Beluga

Proofs in Beluga: total (recursive) functions

Proof term written by the user, without tactics

24/35

Encoding of the Harmony Lemma: technical lemmas

e Technical lemmas about substitutions and free/bound names:

HOAS — automatically achieved (except one)

25/35

Encoding of the Harmony Lemma: lemmas about rewriting

e Lemmas about rewriting:

New type family for existentials and sequences of binders, proof by induction

26/35

Encoding of the Harmony Lemma: lemmas about rewriting

Lemma (Rewriting of processes involved in input transitions)

If Q ﬂ Q' then there exists a finite (possibly empty) set of names wy, ..., w,
(withx,y # w; Vi = 1, ..., n) and two processes R, § such that

Q= (vwy)...(uwy)(x(2).R|S) and Q = (vwy)...(vw,)(R | S). (%)

e Existentials and conjunctions — LF type families to encode them
¢ Sequences of binders — Inductive encoding (no binders / (n + 1) binders)

26/35

Encoding of the Harmony Lemma: lemmas about rewriting

Existential type for input rewriting

...there exist wy, ..., wy, R, S such that one of the following holds:
i. Q=x(y).R|Sand Q' =R | S;
i. Q= (vw)P, Q' = (vw)P’ and the congruences (x) hold for P and P'.

LF ex_inp_rew: proc — names — (names — proc) — type =
| inp_base: Q cong ((p_in X R) p_par S)
— ({y:names} (Q’ y) cong ((R y) p_par S)) — ex_inp_rew Q X Q’
| inp_ind: Q cong (p_res P) — ({y:names} (Q’ y) cong (p_res (P’ y)))
— ({w:names} ex_inp_rew (P w) X \y.(P’ y w)) — ex_inp_rew Q X Q’

26/35

Encoding of the Harmony Lemma: lemmas about rewriting

Types encoding existentials: analyzed by pattern matching through additional
lemmas, proved by induction over their structure

In some cases, lexicographic induction on both arguments is required:

Auxiliary Lemma

rec fs_coml_impl_red: (g:ctx) [g - ex_fout_rew P1 X Y Q1]
— [g F ex_inp_rew P2 X \x.Q2[..,x]]
— [g + (P1 p_par P2) red (Q1 p_par Q2[..,Y]D] = ...

— Splitting the function in two, respectively decreasing on a single argument

27/35

Encoding of Harmony Lemma: congruence-as-bisimilarity lemma

e Congruence-as-bisimilarity lemma:

1. We need a technical lemma

Strengthening Lemma

If ', x:names - P =% Q,, then there are o/, Q' such that a, = o/, Qy = Q' and
I'-P5 (¢

rec strengthen_fstep: (g:ctx) {F:[g,x:names - fstep P[..] A Ql}
— ex_str_fstep [g,x:names - F] = ...

28/35

Encoding of Harmony Lemma: congruence-as-bisimilarity lemma

e Congruence-as-bisimilarity lemma:

2. It has two symmetrical assertions regarding both free and bound transitions

— Encoded through four mutual recursive functions (long but
straightforward proof)

Lemma (Congruence is a bisimilarity)

rec cong_fstepleft_impl_fstepright: (g:ctx) [g - P cong Q]
— [g F fstep P A P’] — [g I ex_fstepcong P Q A P’] = ...

28/35

Encoding of the Harmony Lemma: Theorems 1 and 2

Theorem 1 (7-transition implies reduction)

rec fstep_impl_red: (g:ctx) [g - fstep P f_tau Q] — [ghF P red Q] =
fn f = case f of
| [g F fs_coml F1 B1] =
let [g F D1] = fs_out_rew [g - _1 [g F F1] in
let [g F D2] = bs_in_rew [g F _] [g F B1] in
let [g - R] = fs_coml_impl_red [g F D1] [g ~ D2] in [g - R]

Theorem 2 (Reduction implies 7-transition)

rec red_impl_fstepcong: (g:ctx) [g F P red Q]
— [g F ex_fstepcong P P f_tau Q] =
/ total r (red_impl_fstepcong _ _ _ r) /
fn r = let [g F D1] = red_impl_red_rew r in
let [g | D2] = red_rew_impl_fstepcong [g D1] in [g F D2]

29/35

Table of Contents

» Conclusions

30/35

Evaluation

Some numbers:

| | Informal proof | Beluga formalization |

Proof size ~30 pages ~700 lines
Technical lemmas 8 1
Theorems 2 2
Main lemmas 5 5

31/35

Evaluation

Some numbers:

| | Informal proof | Beluga formalization |

Proof size ~30 pages ~700 lines
Technical lemmas 8 1
Theorems 2 2
Main lemmas 5 5

e Concise formalization: HOAS + Beluga

31/35

Evaluation

Some numbers:

| | Informal proof | Beluga formalization |

Proof size ~30 pages ~700 lines
Technical lemmas 8 1
Theorems 2 2
Main lemmas 5 5

e One-to-one correspondence between formal and informal proof

31/35

Evaluation

Some numbers:

| | Informal proof | Beluga formalization |

Proof size ~30 pages ~700 lines
Technical lemmas 8 1
Theorems 2 2
Main lemmas 5 5

e There are additional lemmas in the formalization, due to the current state of
Beluga (e.g. lack of construct for existentials) and corresponding to parts of the
informal lemmas

31/35

Evaluation

Positive aspects of Beluga:

e HOAS — less technical details

e Almost uneventful formalization process — suitable environment for this
system

e Reliable totality checker, despite heavy use of mutual recursion

Negative aspects of Beluga:

e Lack of a construct for existentials and conjunctions

32/35

Conclusions

Results:
e First formal and informal proof about semantics equivalence

¢ Development of techniques to encode specific constructs (sequences of
binders, lexicographic induction)

e Contribution to the Concurrent Calculi Formalisation Benchmark

33/35

Future Work

e Proving semantics equivalence for an extended version of the w-calculus
e Experimenting automation (Harpoon)

e Providing a Beluga solution for all the CCFB problems

34/35

Thank you for listening!
Any questions?

35/35

	Introduction
	The -Calculus and the Harmony Lemma
	Beluga Mechanization
	Conclusions

