A Beluga Formalization of the Harmony Lemma in the π -Calculus

Gabriele Cecilia
Joint work with Alberto Momigliano

Università degli Studi di Milano

8 July 2024

Table of Contents

- **▶** Introduction
- ▶ The π -Calculus and the Harmony Lemma
- Beluga Mechanization
- ▶ Conclusions

The POPLMark Challenge (2005)

"How close are we to a world where every paper on programming languages is accompanied by an electronic appendix with machine-checked proofs?"

The POPLMark Challenge (2005)

"How close are we to a world where every paper on programming languages is accompanied by an electronic appendix with machine-checked proofs?"

- Challenges about the formalization of the metatheory of programming languages
- Objectives: measure progress, find the best practices to address typical issues, improve proof assistants, stimulate collaboration
- New benchmarks: POPLMark Reloaded (2019), Concurrent Calculi Formalisation Benchmark (2024)

The Concurrent Calculi Formalisation Benchmark (2024)

Set of challenges about the formalization of concurrent systems

- Objectives: same as POPLMark, but focused on concurrency
- Three issues:
 - i. Linearity
 - ii. Scope extrusion \rightarrow scope of restricted names may change over time
- iii. Coinductive reasoning

The Concurrent Calculi Formalisation Benchmark (2024)

Set of challenges about the formalization of concurrent systems

- Objectives: same as POPLMark, but focused on concurrency
- Three issues:
 - i. Linearity
 - ii. Scope extrusion \rightarrow scope of restricted names may change over time
- iii. Coinductive reasoning

Second challenge of the CCFB: formalizing the Harmony Lemma for the π -calculus. Equivalence of two semantics which treat scope extrusion differently

Table of Contents

- Introduction
- ightharpoonup The π -Calculus and the Harmony Lemma
- Beluga Mechanization
- ► Conclusions

General features of the π -calculus

Process calculus: model for concurrent systems.

General features of the π -calculus

Process calculus: model for concurrent systems.

- Introduced by R.Milner, J. Parrow and D. Walker in 1992.
- Double nature of names: means of communication, data exchanged.
- It models processes whose interconnections change as they interact.

Example of process interaction:

Syntax

We assume the existence of a countably infinite set of names.

Definition

In the CCFB.2, the set of processes is defined by the following syntax:

$$P, Q ::= \mathbf{0} \mid x(y).P \mid \bar{x}y.P \mid (P \mid Q) \mid (\nu x)P$$

Syntax

We assume the existence of a countably infinite set of names.

Definition

In the CCFB.2, the set of processes is defined by the following syntax:

$$P,Q ::= \mathbf{0} \mid x(y).P \mid \bar{x}y.P \mid (P \mid Q) \mid (\nu x)P$$

Notation:

fn(P): set of free names in P

bn(P): set of bound names in P

Semantics

Process behaviour is defined through an operational semantics.

In the CCFB.2, two different approaches:

Semantics

Process behaviour is defined through an operational semantics.

In the CCFB.2, two different approaches:

- Reduction semantics: congruence + reduction
- Labelled Transition System (LTS) semantics: actions + transitions

Definition

We define the congruence relation \equiv as the smallest relation over processes, closed under compatibility and equivalence laws, satisfying the following axioms:

$$\frac{\text{PAR-ASSOC}}{P \mid (Q \mid R) \equiv (P \mid Q) \mid R} \qquad \frac{\text{PAR-UNIT}}{P \mid \mathbf{0} \equiv P} \qquad \frac{\text{PAR-COMM}}{P \mid Q \equiv Q \mid P}$$

$$\frac{\text{SC-Ext-Zero}}{(\nu x) \mathbf{0} \equiv \mathbf{0}} \qquad \frac{\frac{\text{SC-Ext-Par}}{x \notin \text{fn}(Q)}}{(\nu x) P \mid Q \equiv (\nu x) (P \mid Q)} \qquad \frac{\text{SC-Ext-Res}}{(\nu x) (\nu y) P \equiv (\nu y) (\nu x) P}$$

Definition

We define the reduction relation \rightarrow as the smallest relation over processes satisfying the following rules:

$$\frac{\text{R-Com}}{\bar{x}y.P \mid x(z).Q \rightarrow P \mid Q\{y/z\}} \qquad \frac{P \rightarrow Q}{P \mid R \rightarrow Q \mid R}$$

$$\frac{\text{R-Res}}{P \rightarrow Q} \qquad P = P' \qquad P' \rightarrow Q' \qquad Q' \equiv Q$$

$$\frac{P \rightarrow Q}{(\nu x)P \rightarrow (\nu x)Q} \qquad P \rightarrow Q$$

Definition

We define the reduction relation \rightarrow as the smallest relation over processes satisfying the following rules:

$$\frac{\text{R-Com}}{\bar{x}y.P \mid x(z).Q \rightarrow P \mid Q\{y/z\}} \qquad \frac{P \rightarrow Q}{P \mid R \rightarrow Q \mid R}$$

$$\frac{\text{R-Res}}{P \rightarrow Q} \qquad P = P' \qquad \frac{\text{R-Struct}}{P' \rightarrow Q'} \qquad Q' \equiv Q$$

$$\frac{P \rightarrow Q}{(\nu x)P \rightarrow (\nu x)Q} \qquad P \rightarrow Q$$

Definition

We define the reduction relation \rightarrow as the smallest relation over processes satisfying the following rules:

$$\frac{\text{R-Com}}{\bar{x}y.P \mid x(z).Q \rightarrow P \mid Q\{y/z\}} \qquad \frac{P \rightarrow Q}{P \mid R \rightarrow Q \mid R}$$

$$\frac{\text{R-Res}}{P \rightarrow Q} \qquad P = P' \qquad P' \rightarrow Q' \qquad Q' \equiv Q$$

$$\frac{P \equiv P' \qquad P' \rightarrow Q' \qquad Q' \equiv Q}{P \rightarrow Q}$$

Definition

The set of actions is defined by the following syntax:

$$\alpha ::= \mathbf{x}(\mathbf{y}) \mid \bar{\mathbf{x}}\mathbf{y} \mid \bar{\mathbf{x}}(\mathbf{y}) \mid \tau$$

Definition

The set of actions is defined by the following syntax:

$$\alpha ::= \mathbf{x}(\mathbf{y}) \mid \bar{\mathbf{x}}\mathbf{y} \mid \bar{\mathbf{x}}(\mathbf{y}) \mid \tau$$

Notation:

 $fn(\alpha)$: set of free names in α

 $\mathsf{bn}(\alpha)$: set of bound names in α

 $n(\alpha)$: set of names in α

Definition

We define the transition relation $\cdot \to \cdot$ as the smallest relation which satisfies the following rules:

Thing rules:
$$\frac{S-IN}{x(z).P \xrightarrow{x(z)} P} \frac{S-OUT}{\overline{x}y.P \xrightarrow{\overline{x}y} P} \frac{P \xrightarrow{\Delta} P' & \text{bn}(\alpha) \cap \text{fn}(Q) = \emptyset}{P \mid Q \xrightarrow{\Delta} P' \mid Q}$$

$$S-COM-L \frac{P \xrightarrow{\overline{x}y} P' & Q \xrightarrow{x(z)} Q'}{P \mid Q \xrightarrow{\tau} P' \mid Q' \{y/z\}} \qquad S-RES \frac{P \xrightarrow{\alpha} P' & z \notin \text{n}(\alpha)}{(\nu z)P \xrightarrow{\alpha} (\nu z)P'}$$

$$S-OPEN \frac{P \xrightarrow{\overline{x}z} P' & z \neq x}{(\nu z)P \xrightarrow{\overline{x}(z)} P'} \qquad S-CLOSE-L \frac{P \xrightarrow{\overline{x}(z)} P' & Q \xrightarrow{x(z)} Q'}{P \mid Q \xrightarrow{\tau} (\nu z)(P' \mid Q')}$$

Definition

We define the transition relation $\cdot \to \cdot$ as the smallest relation which satisfies the following rules:

Ing rules:

$$\frac{S-IN}{x(z).P \xrightarrow{x(z)} P} \frac{S-OUT}{\bar{x}y.P \xrightarrow{\bar{x}y} P} \frac{P \xrightarrow{\Delta} P' & \text{bn}(\alpha) \cap \text{fn}(Q) = \emptyset}{P \mid Q \xrightarrow{\alpha} P' \mid Q}$$

$$S-COM-L \frac{P \xrightarrow{\bar{x}y} P' & Q \xrightarrow{x(z)} Q'}{P \mid Q \xrightarrow{\tau} P' \mid Q' \{y/z\}} \qquad S-RES \frac{P \xrightarrow{\alpha} P' & z \notin \text{n}(\alpha)}{(\nu z)P \xrightarrow{\alpha} (\nu z)P'}$$

$$S-OPEN \frac{P \xrightarrow{\bar{x}z} P' & z \neq x}{(\nu z)P \xrightarrow{\bar{x}(z)} P'} \qquad S-CLOSE-L \frac{P \xrightarrow{\bar{x}(z)} P' & Q \xrightarrow{x(z)} Q'}{P \mid Q \xrightarrow{\tau} (\nu z)(P' \mid Q')}$$

Definition

We define the transition relation $\cdot \xrightarrow{\cdot} \cdot$ as the smallest relation which satisfies the following rules:

Thing rules:
$$\frac{S-IN}{x(z).P \xrightarrow{x(z)} P} \frac{S-OUT}{\bar{x}y.P \xrightarrow{\bar{x}y} P} \frac{P \xrightarrow{\Delta} P' & \text{bn}(\alpha) \cap \text{fn}(Q) = \emptyset}{P \mid Q \xrightarrow{\Delta} P' \mid Q}$$

$$S-COM-L \frac{P \xrightarrow{\bar{x}y} P' & Q \xrightarrow{x(z)} Q'}{P \mid Q \xrightarrow{\tau} P' \mid Q' \{y/z\}} \qquad S-RES \frac{P \xrightarrow{\alpha} P' & z \notin \text{n}(\alpha)}{(\nu z)P \xrightarrow{\alpha} (\nu z)P'}$$

$$S-OPEN \frac{P \xrightarrow{\bar{x}z} P' & z \neq x}{(\nu z)P \xrightarrow{\bar{x}(z)} P'} \qquad S-CLOSE-L \frac{P \xrightarrow{\bar{x}(z)} P' & Q \xrightarrow{x(z)} Q'}{P \mid Q \xrightarrow{\tau} (\nu z)(P' \mid Q')}$$

Definition

We define the transition relation $\cdot \to \cdot$ as the smallest relation which satisfies the following rules:

S-IN
$$\frac{S-\text{PAR-L}}{\bar{x}(z).P \xrightarrow{\bar{x}(z)} P} \qquad \frac{S-\text{OUT}}{\bar{x}y.P \xrightarrow{\bar{x}y} P} \qquad \frac{P \xrightarrow{\alpha} P' \quad \text{bn}(\alpha) \cap \text{fn}(Q) = \emptyset}{P \mid Q \xrightarrow{\alpha} P' \mid Q}$$

$$S-\text{COM-L} \xrightarrow{P \xrightarrow{\bar{x}y} P'} \qquad Q \xrightarrow{x(z)} Q' \qquad S-\text{RES} \xrightarrow{P \xrightarrow{\alpha} P'} \qquad z \notin \text{n}(\alpha) \qquad (\nu z)P \xrightarrow{\alpha} (\nu z)P'$$

$$S-\text{OPEN} \xrightarrow{P \xrightarrow{\bar{x}z} P'} \qquad z \neq x \qquad S-\text{Close-L} \xrightarrow{P \xrightarrow{\bar{x}(z)} P'} \qquad Q \xrightarrow{x(z)} Q' \qquad (\nu z)P \xrightarrow{\bar{x}(z)} P' \qquad Q \xrightarrow{x(z)} Q' \qquad (\nu z)P \xrightarrow{\bar{x}(z)} P' \qquad Q \xrightarrow{x(z)} Q' \qquad (\nu z)P' \qquad (\nu z)P'$$

The Harmony Lemma

Harmony Lemma: the two semantics are equivalent

Theorem 1 (τ -transition implies reduction)

 $P \xrightarrow{\tau} Q$ implies $P \to Q$.

Theorem 2 (Reduction implies au-transition)

 $P \to Q$ implies the existence of a Q' such that $P \xrightarrow{\tau} Q'$ and $Q \equiv Q'$.

The Harmony Lemma

Harmony Lemma: the two semantics are equivalent

"Rather than giving the whole proof, we explain the strategy and invite the reader to check some of the details" [Sangiorgi & Walker]

ightarrow complete the mathematical proof, filling out the details

Ingredients:

8 technical lemmas (substitutions, free/bound names)

Lemma (Names in output transitions)

If $P \xrightarrow{\bar{x}y} P'$, then $x, y \in fn(P)$.

Ingredients:

• Some lemmas about rewriting

Lemma (Rewriting of processes involved in input transitions)

If $Q \xrightarrow{x(y)} Q'$ then there exists a finite (possibly empty) set of names $w_1, ..., w_n$ (with $x, y \neq w_i \ \forall i = 1, ..., n$) and two processes R, S such that

$$Q \equiv (\nu w_1)...(\nu w_n)(\mathbf{x}(\mathbf{z}).\mathbf{R} \mid S)$$
 and $Q' \equiv (\nu w_1)...(\nu w_n)(\mathbf{R} \mid S)$.

Ingredients:

• A congruence-as-bisimulation lemma

Lemma (Congruence is a bisimulation)

If $P \equiv Q$ and $P \xrightarrow{\alpha} P'$, then there exists a process Q' such that $Q \xrightarrow{\alpha} Q'$ and $P' \equiv Q'$.

$$egin{array}{ccc} P &\equiv & Q \ &\downarrow^{lpha} \ P' \end{array}$$

Ingredients:

• A congruence-as-bisimulation lemma

Lemma (Congruence is a bisimulation)

If $P \equiv Q$ and $P \xrightarrow{\alpha} P'$, then there exists a process Q' such that $Q \xrightarrow{\alpha} Q'$ and $P' \equiv Q'$.

Proofs are straightforward (sometimes long) inductions.

Table of Contents

- Introduction
- ▶ The π -Calculus and the Harmony Lemma
- ► Beluga Mechanization
- ► Conclusions

Mechanization of the π -calculus

Complex aspects of the π -calculus mechanization:

- Binding constructs $\rightarrow \alpha$ -equivalence, substitutions
- Scope extrusion $o \alpha$ -equivalence and variable conventions

Some previous π -calculus formalizations

Author, Year	Publication	Technique
Melham 94	A Mechanized Theory of the π -Calculus in HOL	Named syntax
Hirschkoff 97	A Full Formalisation of π -Calculus Theory	De Bruijn
	in the Calculus of Constructions	indexes
Bengtson et al. 09	Formalizing the π -Calculus using Nominal Logic	Nominal techniques
Castro et al. 19	Engineering the Meta-Theory of Session Types	Locally nameless
Miller et al. 99	Foundational Aspects of Syntax	HOAS
Despeyroux 00	A Higher-Order Specification of the π -Calculus	HOAS
Honsell et al. 01	π -Calculus in (Co)Inductive Type Theory	HOAS

Why HOAS?

 α -renaming and capture-avoiding substitutions are implemented by the meta-language

→ Side conditions in definitions and technical lemmas are automatically achieved

Why HOAS?

 α -renaming and capture-avoiding substitutions are implemented by the meta-language

- ightarrow Side conditions in definitions and technical lemmas are automatically achieved
 - Cleaner definitions and proofs
 - The user can focus on the development of the target system

With other techniques, most of the effort is devoted to names handling (e.g. Hirschkoff, 75%)

Why Beluga?

Specifically designed for reasoning about formal systems

- ightarrow Encoding of object-level binding constructs through HOAS
- → Two-level system (LF-level, computation-level)
- ightarrow Curry-Howard isomorphism: proofs as recursive functional programs, propositions as types

Encoding of the Syntax

LF types for names and processes:

Names

```
LF names: type = ;
```

Processes

```
LF proc: type =  | p_{zero}: proc | p_{in}: names \rightarrow (names \rightarrow proc) \rightarrow proc | x(y).P \text{ input}  | p_out: names \rightarrow names \rightarrow proc \rightarrow proc | p_par: proc \rightarrow proc \rightarrow proc | p_res: (names \rightarrow proc) \rightarrow proc | p_res: (names \rightarrow proc) \rightarrow proc | (\nu x)P \text{ restriction}
```

Example (encoding of $(\nu x)P$): p_res \x . (P x)

Encoding of the Syntax

Terms are paired with contexts, containing assumptions. Contexts are classified through schemas

We need a context of the form "x:names":

Context declaration

```
schema ctx = names;
```

Encoding of the Syntax

Terms are paired with contexts, containing assumptions. Contexts are classified through schemas

We need a context of the form "x:names":

Context declaration

```
schema ctx = names;
```

<u>Consequence:</u> we can define *contextual* processes $[g \vdash P]$, where g contains the free variables occurring in the open process P.

Encoding of the Reduction Semantics

Congruence and Reduction

```
LF cong: proc \rightarrow proc \rightarrow type = | sc_ext_par: cong ((p_res P) p_par Q) (p_res (\x.((P x) p_par Q))) ...

LF red: proc \rightarrow proc \rightarrow type = | r_res: ({x:names} red (P x) (Q x)) \rightarrow red (p_res P) (p_res Q) ...

\frac{x \notin fn(Q)}{(\nu x)P \mid Q \equiv (\nu x)(P \mid Q)}
```

- There is no side condition in rule sc_ext_par
- Universal quantification $\{x : names\}$ is used to descend into binders

Encoding of the LTS Semantics (Honsell et al.)

Actions and Transition

```
LF f_act: type = LF b_act: type = | b_in: names \rightarrow b_act | f_out: names \rightarrow names \rightarrow f_act | b_out: names \rightarrow b_act
```

• Two types for free and bound actions; no bound name in bound actions.

Encoding of the LTS Semantics (Honsell et al.)

Actions and Transition

```
LF f_act: type = 

| f_tau: f_act | b_in: names \rightarrow b_act | b_out: names \rightarrow b_act | LF fstep: proc \rightarrow f_act \rightarrow proc \rightarrow type = 

| fs_com1: fstep P (f_out X Y) P' \rightarrow bstep Q (b_in X) Q' \rightarrow fstep (P p_par Q) f_tau (P' p_par (Q' Y)) | fs_close1: bstep P (b_out X) P' \rightarrow bstep Q (b_in X) Q' \rightarrow fstep (P p_par Q) f_tau (p_res \z.((P' z) p_par (Q' z))) ...
```

The result of a free transition is a process.

Encoding of the LTS Semantics (Honsell et al.)

Actions and Transition

```
LF f_act: type =
                                                    LF b_act: type =
  | f_tau: f_act
                                                       | b_{in}: names \rightarrow b_{act}
  	extsf{f} out: names 	o names 	o f_act
                                                      | b_out: names \rightarrow b_act
LF fstep: proc \rightarrow f_act \rightarrow proc \rightarrow type =
  | fs_com1: fstep P (f_out X Y) P' \rightarrow bstep Q (b_in X) Q'
    → fstep (P p_par Q) f_tau (P' p_par (Q' Y))
  | fs_close1: bstep P (b_out X) P' → bstep Q (b_in X) Q'
     \rightarrow fstep (P p_par Q) f_tau (p_res \z.((P' z) p_par (Q' z))) ...
and bstep: proc \rightarrow b_act \rightarrow (names \rightarrow proc) \rightarrow type =
  | bs_in: bstep (p_in X P) (b_in X) P ...
```

• The result of a bound transition is a process abstraction.

Writing proofs in Beluga

Proofs in Beluga: total (recursive) functions

Proof term written by the user, without tactics

Encoding of the Harmony Lemma: technical lemmas

• Technical lemmas about substitutions and free/bound names:

 $HOAS \rightarrow automatically achieved (except one)$

• Lemmas about rewriting:

New type family for existentials and sequences of binders, proof by induction

Lemma (Rewriting of processes involved in input transitions)

If $Q \xrightarrow{x(y)} Q'$ then there exists a finite (possibly empty) set of names $w_1, ..., w_n$ (with $x, y \neq w_i \ \forall i = 1, ..., n$) and two processes R, S such that

$$Q \equiv (\nu w_1)...(\nu w_n)(x(z).R \mid S) \quad \text{and} \quad Q' \equiv (\nu w_1)...(\nu w_n)(R \mid S). \tag{\star}$$

- ullet Existentials and conjunctions o LF type families to encode them
- ullet Sequences of binders o Inductive encoding (no binders / (n+1) binders)

Existential type for input rewriting

... there exist w_1, \ldots, w_n, R, S such that one of the following holds:

```
i. Q \equiv x(y).R \mid S and Q' \equiv R \mid S;
```

ii. $Q \equiv (\nu w)P$, $Q' \equiv (\nu w)P'$ and the congruences (*) hold for P and P'.

```
LF ex_inp_rew: proc \rightarrow names \rightarrow (names \rightarrow proc) \rightarrow type = | inp_base: Q cong ((p_in X R) p_par S) \rightarrow ({y:names} (Q' y) cong ((R y) p_par S)) \rightarrow ex_inp_rew Q X Q' | inp_ind: Q cong (p_res P) \rightarrow ({y:names} (Q' y) cong (p_res (P' y))) \rightarrow ({w:names} ex_inp_rew (P w) X \y.(P' y w)) \rightarrow ex_inp_rew Q X Q'
```

Types encoding existentials: analyzed by pattern matching through additional lemmas, proved by induction over their structure

In some cases, lexicographic induction on both arguments is required:

Auxiliary Lemma

```
rec fs_com1_impl_red: (g:ctx) [g ⊢ ex_fout_rew P1 X Y Q1]

→ [g ⊢ ex_inp_rew P2 X \x.Q2[..,x]]

→ [g ⊢ (P1 p_par P2) red (Q1 p_par Q2[..,Y])] = ...
```

→ Splitting the function in two, respectively decreasing on a single argument

Encoding of Harmony Lemma: congruence-as-bisimilarity lemma

- Congruence-as-bisimilarity lemma:
 - 1. We need a technical lemma

Strengthening Lemma

```
If \Gamma, x: \texttt{names} \vdash P \xrightarrow{\alpha_x} Q_x, then there are \alpha', Q' such that \alpha_x = \alpha', Q_x = Q' and \Gamma \vdash P \xrightarrow{\alpha'} Q'

rec strengthen_fstep: (g:ctx) {F:[g,x:names \vdash fstep P[..] A Q]}

\rightarrow \texttt{ex\_str\_fstep} [g,x:names \vdash F] = ...
```

Encoding of Harmony Lemma: congruence-as-bisimilarity lemma

- Congruence-as-bisimilarity lemma:
 - 2. It has two symmetrical assertions regarding both free and bound transitions
 - \rightarrow Encoded through four mutual recursive functions (long but straightforward proof)

Lemma (Congruence is a bisimilarity)

```
rec cong_fstepleft_impl_fstepright: (g:ctx) [g \vdash P cong Q] \rightarrow [g \vdash fstep P A P'] \rightarrow [g \vdash ex_fstepcong P Q A P'] = ...
```

Encoding of the Harmony Lemma: Theorems 1 and 2

Theorem 1 (au-transition implies reduction)

```
rec fstep_impl_red: (g:ctx) [g \vdash fstep P f_tau Q] \rightarrow [g \vdash P red Q] = fn f \Rightarrow case f of  
| [g \vdash fs_com1 F1 B1] \Rightarrow  
let [g \vdash D1] = fs_out_rew [g \vdash _] [g \vdash F1] in  
let [g \vdash D2] = bs_in_rew [g \vdash _] [g \vdash B1] in  
let [g \vdash R] = fs_com1_impl_red [g \vdash D1] [g \vdash D2] in [g \vdash R] ...
```

Theorem 2 (Reduction implies au-transition)

Table of Contents

- Introduction
- ▶ The π -Calculus and the Harmony Lemma
- ► Beluga Mechanization
- **▶** Conclusions

Some numbers:

	Informal proof	Beluga formalization
Proof size	\sim 30 pages	\sim 700 lines
Technical lemmas	8	1
Theorems	2	2
Main lemmas	5	5

Some numbers:

	Informal proof	Beluga formalization
Proof size	\sim 30 pages	\sim 700 lines
Technical lemmas	8	1
Theorems	2	2
Main lemmas	5	5

• Concise formalization: HOAS + Beluga

Some numbers:

	Informal proof	Beluga formalization
Proof size	\sim 30 pages	\sim 700 lines
Technical lemmas	8	1
Theorems	2	2
Main lemmas	5	5

• One-to-one correspondence between formal and informal proof

Some numbers:

	Informal proof	Beluga formalization
Proof size	\sim 30 pages	\sim 700 lines
Technical lemmas	8	1
Theorems	2	2
Main lemmas	5	5

• There are additional lemmas in the formalization, due to the current state of Beluga (e.g. lack of construct for existentials) and corresponding to parts of the informal lemmas

Positive aspects of Beluga:

- HOAS → less technical details
- \bullet Almost uneventful formalization process \rightarrow suitable environment for this system
- Reliable totality checker, despite heavy use of mutual recursion

Negative aspects of Beluga:

Lack of a construct for existentials and conjunctions

Conclusions

Results:

- First formal and informal proof about semantics equivalence
- Development of techniques to encode specific constructs (sequences of binders, lexicographic induction)
- Contribution to the Concurrent Calculi Formalisation Benchmark

Future Work

- Proving semantics equivalence for an extended version of the π -calculus
- Experimenting automation (Harpoon)
- Providing a Beluga solution for all the CCFB problems

Thank you for listening! Any questions?