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The POPLMark Challenge (2005)

“How close are we to a world where every paper on programming languages is
accompanied by an electronic appendix with machine-checked proofs?”

• Challenges about the formalization of the metatheory of programminglanguages
• Objectives: measure progress, find the best practices to address typicalissues, improve proof assistants, stimulate collaboration
• New benchmarks: POPLMark Reloaded (2019), Concurrent CalculiFormalisation Benchmark (2024)
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The Concurrent Calculi Formalisation Benchmark (2024)

Set of challenges about the formalization of concurrent systems
• Objectives: same as POPLMark, but focused on concurrency
• Three issues:

i. Linearity
ii. Scope extrusion → scope of restricted names may change over time

iii. Coinductive reasoning

Second challenge of the CCFB: formalizing the Harmony Lemma for the π-calculus.Equivalence of two semantics which treat scope extrusion differently
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General features of the π-calculus

Process calculus: model for concurrent systems.

• Introduced by R.Milner, J. Parrow and D. Walker in 1992.
• Double nature of names: means of communication, data exchanged.
• It models processes whose interconnections change as they interact.
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Example of process interaction:

Server

Before interaction After interaction

ServerClient Client

Printer Printer

b b

a a a
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Syntax

We assume the existence of a countably infinite set of names.
Definition

In the CCFB.2, the set of processes is defined by the following syntax:
P,Q ::= 0 | x(y).P | x̄y.P | (P | Q) | (νx)P

Notation:
fn(P): set of free names in P
bn(P): set of bound names in P

8/35



Syntax

We assume the existence of a countably infinite set of names.
Definition

In the CCFB.2, the set of processes is defined by the following syntax:
P,Q ::= 0 | x(y).P | x̄y.P | (P | Q) | (νx)P

Notation:
fn(P): set of free names in P
bn(P): set of bound names in P

8/35



Semantics

Process behaviour is defined through an operational semantics.
In the CCFB.2, two different approaches:

• Reduction semantics: congruence + reduction
• Labelled Transition System (LTS) semantics: actions + transitions
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Reduction Semantics

Definition
We define the congruence relation ≡ as the smallest relation over processes,closed under compatibility and equivalence laws, satisfying the following axioms:

Par-Assoc

P | (Q | R) ≡ (P | Q) | R

Par-Unit

P | 0 ≡ P

Par-Comm

P | Q ≡ Q | P

Sc-Ext-Zero

(νx) 0 ≡ 0

Sc-Ext-Par
x /∈ fn(Q)

(νx)P | Q ≡ (νx)(P | Q)

Sc-Ext-Res

(νx)(νy)P ≡ (νy)(νx)P
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Reduction Semantics

Definition
We define the reduction relation → as the smallest relation over processessatisfying the following rules:

R-Com

x̄y.P | x(z).Q → P | Q{y/z}

R-Par
P → Q

P | R → Q | R

R-Res
P → Q

(νx)P → (νx)Q

R-Struct
P ≡ P′ P′ → Q′ Q′ ≡ Q

P → Q

11/35



Reduction Semantics

Definition
We define the reduction relation → as the smallest relation over processessatisfying the following rules:

R-Com

x̄y.P | x(z).Q → P | Q{y/z}

R-Par
P → Q

P | R → Q | R

R-Res
P → Q

(νx)P → (νx)Q

R-Struct
P ≡ P′ P′ → Q′ Q′ ≡ Q

P → Q

11/35



Reduction Semantics

Definition
We define the reduction relation → as the smallest relation over processessatisfying the following rules:

R-Com

x̄y.P | x(z).Q → P | Q{y/z}

R-Par
P → Q

P | R → Q | R

R-Res
P → Q

(νx)P → (νx)Q

R-Struct
P ≡ P′ P′ → Q′ Q′ ≡ Q

P → Q

11/35



LTS Semantics

Definition
The set of actions is defined by the following syntax:

α ::= x(y) | x̄y | x̄(y) | τ

Notation:
fn(α): set of free names in α
bn(α): set of bound names in α
n(α): set of names in α

12/35



LTS Semantics

Definition
The set of actions is defined by the following syntax:

α ::= x(y) | x̄y | x̄(y) | τ

Notation:
fn(α): set of free names in α
bn(α): set of bound names in α
n(α): set of names in α

12/35



LTS Semantics
Definition

We define the transition relation · ·−→ · as the smallest relation which satisfies thefollowing rules:
S-In

x(z).P
x(z)−−→ P

S-Out

x̄y.P
x̄y−→ P

S-Par-L

P α−→ P′ bn(α) ∩ fn(Q) = ∅
P | Q α−→ P′ | Q

S-Com-L
P

x̄y−→ P′ Q
x(z)−−→ Q′

P | Q τ−→ P′ | Q′{y/z}
S-Res

P α−→ P′ z /∈ n(α)

(νz)P α−→ (νz)P′

S-Open
P x̄z−→ P′ z ̸= x

(νz)P
x̄(z)−−→ P′ S-Close-L

P
x̄(z)−−→ P′ Q

x(z)−−→ Q′

P | Q τ−→ (νz)(P′ | Q′)
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The Harmony Lemma

Harmony Lemma: the two semantics are equivalent
Theorem 1 (τ -transition implies reduction)

P τ−→ Q implies P → Q.
Theorem 2 (Reduction implies τ -transition)

P → Q implies the existence of a Q′ such that P τ−→ Q′ and Q ≡ Q′.
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The Harmony Lemma

Harmony Lemma: the two semantics are equivalent
“Rather than giving the whole proof, we explain the strategy and invite the reader
to check some of the details” [Sangiorgi & Walker]
→ complete the mathematical proof, filling out the details
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Mathematical proof of the Harmony Lemma

Ingredients:
• 8 technical lemmas (substitutions, free/bound names)

Lemma (Names in output transitions)

If P
x̄y−→ P′, then x, y ∈ fn(P).
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Mathematical proof of the Harmony Lemma

Ingredients:
• Some lemmas about rewriting

Lemma (Rewriting of processes involved in input transitions)

If Q
x(y)−−→ Q′ then there exists a finite (possibly empty) set of names w1, ...,wn(with x, y ̸= wi ∀i = 1, ..., n) and two processes R, S such that

Q ≡ (νw1)...(νwn)(x(z).R | S) and Q′ ≡ (νw1)...(νwn)(R | S).
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Mathematical proof of the Harmony Lemma

Ingredients:
• A congruence-as-bisimulation lemma

Lemma (Congruence is a bisimulation)

If P ≡ Q and P α−→ P′, then there exists a process Q′ such that Q α−→ Q′ and P′ ≡ Q′.
P Q

P′

≡

α
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Mathematical proof of the Harmony Lemma
Ingredients:
• A congruence-as-bisimulation lemma

Lemma (Congruence is a bisimulation)

If P ≡ Q and P α−→ P′, then there exists a process Q′ such that Q α−→ Q′ and P′ ≡ Q′.
P Q

P′ Q′

≡

≡≡≡

α α

Proofs are straightforward (sometimes long) inductions.
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Mechanization of the π-calculus

Complex aspects of the π-calculus mechanization:
• Binding constructs → α-equivalence, substitutions
• Scope extrusion → α-equivalence and variable conventions
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Some previous π-calculus formalizations

Author, Year Publication Technique
Melham 94 A Mechanized Theory of the π-Calculus in HOL Named syntaxHirschkoff 97 A Full Formalisation of π-Calculus Theory De Bruijnin the Calculus of Constructions indexesBengtson et al. 09 Formalizing the π-Calculus using Nominal Logic Nominal techniquesCastro et al. 19 Engineering the Meta-Theory of Session Types Locally namelessMiller et al. 99 Foundational Aspects of Syntax HOASDespeyroux 00 A Higher-Order Specification of the π-Calculus HOASHonsell et al. 01 π-Calculus in (Co)Inductive Type Theory HOAS
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Why HOAS?

α-renaming and capture-avoiding substitutions are implemented by themeta-language
→ Side conditions in definitions and technical lemmas are automatically achieved

• Cleaner definitions and proofs
• The user can focus on the development of the target system

With other techniques, most of the effort is devoted to names handling (e.g.Hirschkoff, 75%)
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Why Beluga?

Specifically designed for reasoning about formal systems
→ Encoding of object-level binding constructs through HOAS
→ Two-level system (LF-level, computation-level)
→ Curry-Howard isomorphism: proofs as recursive functional programs,propositions as types
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Encoding of the Syntax
LF types for names and processes:

Names
LF names: type = ;

Processes
LF proc: type =

| p_zero: proc

| p_in: names → (names → proc) → proc

| p_out: names → names → proc → proc

| p_par: proc → proc → proc

| p_res: (names → proc) → proc

;

0 inactive
x(y).P input
x̄y.P output
P | Q parallel composition
(νx)P restriction

Example (encoding of (νx)P): p res \x.(P x)
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Encoding of the Syntax

Terms are paired with contexts, containing assumptions. Contexts are classifiedthrough schemas
We need a context of the form “x:names”:

Context declaration

schema ctx = names;
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Encoding of the Syntax

Terms are paired with contexts, containing assumptions. Contexts are classifiedthrough schemas
We need a context of the form “x:names”:

Context declaration

schema ctx = names;

Consequence: we can define contextual processes [g ⊢ P], where g contains thefree variables occurring in the open process P.
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Encoding of the Reduction Semantics

Congruence and Reduction

LF cong: proc → proc → type =

| sc_ext_par: cong ((p_res P) p_par Q) (p_res (\x.((P x) p_par Q)))

...

LF red: proc → proc → type =

| r_res: ({x:names} red (P x) (Q x)) → red (p_res P) (p_res Q)

...

Sc-Ext-Par
x /∈ fn(Q)

(νx)P | Q ≡ (νx)(P | Q)

• There is no side condition in rule sc ext par• Universal quantification {x:names} is used to descend into binders
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Encoding of the LTS Semantics (Honsell et al.)

Actions and Transition

LF f_act: type = LF b_act: type =

| f_tau: f_act | b_in: names → b_act

| f_out: names → names → f_act | b_out: names → b_act

• Two types for free and bound actions; no bound name in bound actions.
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Actions and Transition

LF f_act: type = LF b_act: type =

| f_tau: f_act | b_in: names → b_act

| f_out: names → names → f_act | b_out: names → b_act

LF fstep: proc → f_act → proc → type =

| fs_com1: fstep P (f_out X Y) P’ → bstep Q (b_in X) Q’

→ fstep (P p_par Q) f_tau (P’ p_par (Q’ Y))

| fs_close1: bstep P (b_out X) P’ → bstep Q (b_in X) Q’

→ fstep (P p_par Q) f_tau (p_res \z.((P’ z) p_par (Q’ z))) ...

• The result of a free transition is a process.
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Encoding of the LTS Semantics (Honsell et al.)
Actions and Transition

LF f_act: type = LF b_act: type =

| f_tau: f_act | b_in: names → b_act

| f_out: names → names → f_act | b_out: names → b_act

LF fstep: proc → f_act → proc → type =

| fs_com1: fstep P (f_out X Y) P’ → bstep Q (b_in X) Q’

→ fstep (P p_par Q) f_tau (P’ p_par (Q’ Y))

| fs_close1: bstep P (b_out X) P’ → bstep Q (b_in X) Q’

→ fstep (P p_par Q) f_tau (p_res \z.((P’ z) p_par (Q’ z))) ...
and bstep: proc → b_act → (names → proc) → type =

| bs_in: bstep (p_in X P) (b_in X) P ...

• The result of a bound transition is a process abstraction.
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Writing proofs in Beluga

Proofs in Beluga: total (recursive) functions
Proof term written by the user, without tactics
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Encoding of the Harmony Lemma: technical lemmas

• Technical lemmas about substitutions and free/bound names:
HOAS → automatically achieved (except one)
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Encoding of the Harmony Lemma: lemmas about rewriting

• Lemmas about rewriting:
New type family for existentials and sequences of binders, proof by induction
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Encoding of the Harmony Lemma: lemmas about rewriting

Lemma (Rewriting of processes involved in input transitions)

If Q
x(y)−−→ Q′ then there exists a finite (possibly empty) set of names w1, ...,wn(with x, y ̸= wi ∀i = 1, ..., n) and two processes R, S such that

Q ≡ (νw1)...(νwn)(x(z).R | S) and Q′ ≡ (νw1)...(νwn)(R | S). (⋆)
• Existentials and conjunctions → LF type families to encode them• Sequences of binders → Inductive encoding (no binders / (n + 1) binders)
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Encoding of the Harmony Lemma: lemmas about rewriting

Existential type for input rewriting
. . . there exist w1, . . . , wn, R, S such that one of the following holds:

i. Q ≡ x(y).R | S and Q′ ≡ R | S;
ii. Q ≡ (νw)P, Q′ ≡ (νw)P′ and the congruences (⋆) hold for P and P′.

LF ex_inp_rew: proc → names → (names → proc) → type =

| inp_base: Q cong ((p_in X R) p_par S)

→ ({y:names} (Q’ y) cong ((R y) p_par S)) → ex_inp_rew Q X Q’

| inp_ind: Q cong (p_res P) → ({y:names} (Q’ y) cong (p_res (P’ y)))

→ ({w:names} ex_inp_rew (P w) X \y.(P’ y w)) → ex_inp_rew Q X Q’

26/35



Encoding of the Harmony Lemma: lemmas about rewriting

Types encoding existentials: analyzed by pattern matching through additionallemmas, proved by induction over their structure
In some cases, lexicographic induction on both arguments is required:

Auxiliary Lemma

rec fs_com1_impl_red: (g:ctx) [g ⊢ ex_fout_rew P1 X Y Q1]

→ [g ⊢ ex_inp_rew P2 X \x.Q2[..,x]]

→ [g ⊢ (P1 p_par P2) red (Q1 p_par Q2[..,Y])] = ...

→ Splitting the function in two, respectively decreasing on a single argument
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Encoding of Harmony Lemma: congruence-as-bisimilarity lemma

• Congruence-as-bisimilarity lemma:
1. We need a technical lemma

Strengthening Lemma

If Γ,x:names ⊢ P αx−→ Qx, then there are α′,Q′ such that αx = α′, Qx = Q′ and
Γ ⊢ P α′

−→ Q′

rec strengthen_fstep: (g:ctx) {F:[g,x:names ⊢ fstep P[..] A Q]}

→ ex_str_fstep [g,x:names ⊢ F] = ...
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Encoding of Harmony Lemma: congruence-as-bisimilarity lemma

• Congruence-as-bisimilarity lemma:
2. It has two symmetrical assertions regarding both free and bound transitions

→ Encoded through four mutual recursive functions (long butstraightforward proof)
Lemma (Congruence is a bisimilarity)

rec cong_fstepleft_impl_fstepright: (g:ctx) [g ⊢ P cong Q]

→ [g ⊢ fstep P A P’] → [g ⊢ ex_fstepcong P Q A P’] = ...
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Encoding of the Harmony Lemma: Theorems 1 and 2
Theorem 1 (τ -transition implies reduction)

rec fstep_impl_red: (g:ctx) [g ⊢ fstep P f_tau Q] → [g ⊢ P red Q] =

fn f ⇒ case f of
| [g ⊢ fs_com1 F1 B1] ⇒

let [g ⊢ D1] = fs_out_rew [g ⊢ _] [g ⊢ F1] in
let [g ⊢ D2] = bs_in_rew [g ⊢ _] [g ⊢ B1] in
let [g ⊢ R] = fs_com1_impl_red [g ⊢ D1] [g ⊢ D2] in [g ⊢ R] ...

Theorem 2 (Reduction implies τ -transition)
rec red_impl_fstepcong: (g:ctx) [g ⊢ P red Q]

→ [g ⊢ ex_fstepcong P P f_tau Q] =

/ total r (red_impl_fstepcong _ _ _ r) /

fn r ⇒ let [g ⊢ D1] = red_impl_red_rew r in
let [g ⊢ D2] = red_rew_impl_fstepcong [g ⊢ D1] in [g ⊢ D2]

29/35



Table of Contents

▶ Introduction
▶ The π-Calculus and the Harmony Lemma
▶ Beluga Mechanization
▶ Conclusions

30/35



Evaluation

Some numbers:
Informal proof Beluga formalization

Proof size ∼30 pages ∼700 linesTechnical lemmas 8 1Theorems 2 2Main lemmas 5 5
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Evaluation

Some numbers:
Informal proof Beluga formalization

Proof size ∼30 pages ∼700 linesTechnical lemmas 8 1Theorems 2 2Main lemmas 5 5
• There are additional lemmas in the formalization, due to the current state ofBeluga (e.g. lack of construct for existentials) and corresponding to parts of theinformal lemmas
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Evaluation

Positive aspects of Beluga:
• HOAS → less technical details
• Almost uneventful formalization process → suitable environment for thissystem
• Reliable totality checker, despite heavy use of mutual recursion

Negative aspects of Beluga:
• Lack of a construct for existentials and conjunctions
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Conclusions

Results:
• First formal and informal proof about semantics equivalence
• Development of techniques to encode specific constructs (sequences ofbinders, lexicographic induction)
• Contribution to the Concurrent Calculi Formalisation Benchmark
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Future Work

• Proving semantics equivalence for an extended version of the π-calculus
• Experimenting automation (Harpoon)
• Providing a Beluga solution for all the CCFB problems
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Thank you for listening!
Any questions?
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