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Introduction

Concurrent systems are systems (programs, problems, environments, ...) in
which different units or processes can perform operations independently or
simultaneously with each other.

Examples: concurrent programming, railway systems, ...

Problems: deadlock, correctness, efficiency, ...
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Introduction

Process calculi (or algebras) are mathematical models which allow to
formally describe concurrent systems.

They provide:

formal specification of processes

description of process behaviour and interactions

analysis and verification of process properties
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Calculus of Communicating Systems (R. Milner, 1980)

In CCS each process is a black box, with a name and a collection of
communicating ports (channels) used for input/output.

Operational semantics can be given in terms of automata: processes can
be represented by vertices of certain labelled oriented graphs, and a
change of process state caused by performing an action can be seen as
moving along a certain edge.

It can be used to describe simple situations in which different units
interact with each other. The focus is on interactions themselves, rather
than data exchanged.

Examples: people using vending machines, vehicles using toll booths, ...
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Calculus of Communicating Systems (R. Milner, 1980)

More specifically, CCS models communication, parallel composition of
processes, choice of actions, relabeling and scope restriction; its base
presentation doesn’t support exchange of data between processes or scope
extension.

It can be extended so that process are enabled to send or receive some sort
of data (Value Passing CCS).
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CCS

Examples of processes

coffee

coin

pubCS

coffee

coin

pubCS

coin

coffee

CM

coffee

coin

pubCS’
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CCS
Syntax

Let’s assume the existence of a countably infinite set A of (channel)
names.

We denote the set of complementary names as Ā = {ā | a ∈ A}.

Definition

We define the set of actions as Act = A ∪ Ā ∪ {τ}.

Actions given by channel names represent input actions.
Actions given by overlined channel names represent output actions.
τ is a standard label which represents communication between two
processes changing their state simultaneously.
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CCS
Syntax

Definition

The syntax of CCS processes is the following:

P,Q := 0 | K | α.P | P + Q | P | Q | P[f ] | P \ L

where K is a constant process, α ∈ Act, f is a function from Act to Act
such that f (ā) = f (a) and f (τ) = τ , L ⊆ A ∪ Ā.

We denote the set of CCS processes as Proc.

We also allow definitions of constant process through their (eventually

recursive) defining equation K
def
= P.
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CCS
Syntax

Examples of processes

CM
def
= coin.coffee.CM

CS
def
= pub.coin.coffee.CS

CTM
def
= coin.(coffee.CTM + tea.CTM)

CM | CS def
= (coin.coffee.CM) | (pub.coin.coffee.CS)

VM
def
= coin.item.VM → CM

def
= VM[coffee/item]
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CCS
Syntax

Examples of processes

SM
def
= (CM | CS) \ {coin, coffee}

SM | CS’

CS pubCM

CS’ pubcoffee

coin
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CCS
Syntax

Examples of processes

SM
def
= (CM | CS) \ {coin, coffee}

SM | CS’

CS pubCM

CS’ pubcoffee

coin
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CCS
Semantics

Process behaviour in CCS is defined through a labelled transition
semantics: processes make transitions through actions, returning another
process.

Transitions describe change of state of processes after input/output or
interaction with other processes.

Definition

We define the transition relation
(−)−−→ as the smallest relation which is a

subset of Proc × Act × Proc and satisfies the following rules:
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CCS
Semantics

Definition

S-Act

α.P
α−→ P

S-Sum-L

P
α−→ P ′

P + Q
α−→ P ′

S-Sum-R

Q
α−→ Q ′

P + Q
α−→ Q ′

S-Par-L

P
α−→ P ′

P | Q α−→ P ′ | Q

S-Par-R

Q
α−→ Q ′

P | Q α−→ P | Q ′

S-Com

P
a−→ P ′ Q

ā−→ Q ′

P | Q τ−→ P ′ | Q ′

S-Rel

P
α−→ P ′

P[f ]
α−→ P ′[f ]

S-Res

P
α−→ P ′ α, ᾱ /∈ L

P \ L α−→ P ′ \ L

S-Def

P
α−→ P ′ K

def
= P

K
α−→ P ′
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CCS
Semantics

Examples of transitions

Behaviour of a coffee and tea machine CTM, with

CTM
def
= coin.(coffee.CTM + tea.CTM)

First, the machine receives a coin as an input:

S-Act
coin.(coffee.CTM+ tea.CTM)

coin−−→ coffee.CTM+ tea.CTM

Then, the machine can either output tea or coffee, getting back to
the initial configuration:

S-Sum-R
tea.CTM

tea−−→ CTM

coffee.CTM+ tea.CTM
tea−−→ CTM
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CCS
Semantics

Examples of transitions

Behaviour of the system {coffee machine, computer scientist}

CS | CM, with CM | CS def
= (coin.coffee.CM) | (pub.coin.coffee.CS)

First, the computer scientist produces a publication:

S-Par-R
CS

pub−−→ coin.coffee.CS

CM | CS pub−−→ CM | coin.coffee.CS
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CCS
Semantics

Examples of transitions

Behaviour of the system {coffee machine, computer scientist}

CS | CM, with CM | CS def
= (coin.coffee.CM) | (pub.coin.coffee.CS)

Then, the scientist gives a coin to the machine: the two processes are
interacting, changing their state simultaneously.

S-Com
CM

coin−−→ coffee.CM coin.coffee.CS
coin−−→ coffee.CS

CM | coin.coffee.CS τ−→ coffee.CM | coffee.CS
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CCS
Semantics

Examples of transitions

Behaviour of the system {coffee machine, computer scientist}

CS | CM, with CM | CS def
= (coin.coffee.CM) | (pub.coin.coffee.CS)

Finally, the machine gives coffee to the scientist.

S-Com
coffee.CM

coffee−−−→ CM coffee.CS
coffee−−−→ CS

coffee.CM | coffee.CS τ−→ CM | CS
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CCS
Behavioural Equivalence

When can we say that two processes are equivalent?

Two processes are equivalent when they have the same behaviour , i.e.
when the same observations about them can be made.

Equivalent process then have the same properties, such as the possibility
of deadlock or making a certain transition.
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CCS
Behavioural Equivalence

According to different interpretations of behaviour or observations, there
are different notions of behavioural equivalence.

Strong bisimilarity requires that equivalent processes can make transitions
through the same actions, reaching processes which, in turn, are
equivalent.

According to strong bisimilarity, two processes P and τ.P are not
equivalent; but the τ -labelled transition is internal and thus unobservable,
so we might want these processes to be equivalent.
Weak bisimilarity is a notion of bisimilarity that allows to abstract from
internal transitions in process behaviours.
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CCS
Behavioural Equivalence

Definition

A binary relation R over Proc is a strong bisimulation if, whenever PRQ
and α is an action:

- if P
α−→ P ′, then there is a process Q ′ such that Q

α−→ Q ′ and P ′RQ ′;

- if Q
α−→ Q ′, then there is a process P ′ such that P

α−→ P ′ and P ′RQ ′.

Definition

Two processes P and Q are strongly bisimilar (P ∼ Q) if there is a strong
bisimulation that relates them.
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CCS
Behavioural Equivalence

It can be shown that strong bisimilarity ∼ is the largest strong
bisimulation: it is a bisimulation itself and it contains every other
bisimulation.

It follows that strong bisimulation is an example of coinductive predicate:
it is the largest relation satisfying certain conditions.

On the other hand, the other relations defined in this presentation (such as
the transition relation) are inductive predicates.

Gabriele Cecilia (University of Milan) Process calculi 13 December 2023 20 / 46



CCS
Behavioural Equivalence

It can be shown that strong bisimilarity ∼ is the largest strong
bisimulation: it is a bisimulation itself and it contains every other
bisimulation.

It follows that strong bisimulation is an example of coinductive predicate:
it is the largest relation satisfying certain conditions.

On the other hand, the other relations defined in this presentation (such as
the transition relation) are inductive predicates.

Gabriele Cecilia (University of Milan) Process calculi 13 December 2023 20 / 46



CCS
Behavioural Equivalence

Example of bisimulation

P

P1 P2

Q

Q1

a a

b

a

b

P
def
= a.P1 + a.P2

P1
def
= b.P2

P2
def
= b.P2

Q
def
= a.Q1

Q1
def
= b.Q1
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CCS
Behavioural Equivalence

Example of bisimulation

P

P1 P2

Q

Q1

a a

b

a

b

R = {(P,Q), (P1,Q1), (P2,Q1)}
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Value Passing CCS
Syntax

In Value Passing CCS, processes can also send and receive data (e.g.
natural numbers).

Definition

We define the set of actions (Act) as follows:

α, β := a(n) | ā(n) | τ where a ∈ Names, n ∈ N.
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Value Passing CCS
Syntax

Definition

We define the set of processes (Proc) as follows:

P,Q := 0 | K | a(x).P | ā(e).P | τ.P | P+Q | P | Q | P[f ] | P\L

where K is a constant process, a ∈ Names, x is a variable,
e is an expression in N, f is a function from Act to Act such that
f (ā) = f (a) and f (τ) = τ , L ⊆ A ∪ Ā.

Equations defining constant processes can now carry a parameter, such as

in K (x)
def
= P.
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Value Passing CCS
Semantics

Definition

We define the transition relation
(−)−−→ as the smallest relation which

satisfies the same CCS rules, but with the following new operational rules
for input/output prefixing and for parametrized constant processes:

S-In

a(x).P
a(n)−−→ P{n/x}

n ∈ N

S-Out

ā(e).P
ā(n)−−→ P

e has value n

S-Def
P{n/x} α−→ P ′ K (x)

def
= P

K (e)
α−→ P ′ e has value n
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Value Passing CCS

Examples of processes and transitions

In Value Passing CCS we can define a simple calculator Calc, which
receives a natural number as input and outputs (for example) its successor.

Calc
def
= in(x).Calc(x)

Calc(x)
def
= out(x + 1).Calc

The calculator receives the input:

S-In

in(x).Calc(x)
in(n)−−−→ Calc(n)
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receives a natural number as input and outputs (for example) its successor.

Calc
def
= in(x).Calc(x)

Calc(x)
def
= out(x + 1).Calc

Then, the result of the expression ”x + 1” with n = x is evaluated and the
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S-Out
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π-calculus (R. Milner, J. Parrow & D. Walker, 1992)

In π-calculus there is no difference between channel names and data
exchanged between processes: channel names are transferred along the
channels themselves.

Therefore, π-calculus models processes whose interconnections change as
they interact.

Gabriele Cecilia (University of Milan) Process calculi 13 December 2023 29 / 46



π-calculus (R. Milner, J. Parrow & D. Walker, 1992)

In π-calculus there is no difference between channel names and data
exchanged between processes: channel names are transferred along the
channels themselves.

Therefore, π-calculus models processes whose interconnections change as
they interact.

Gabriele Cecilia (University of Milan) Process calculi 13 December 2023 29 / 46



π-calculus
Syntax

Let’s assume the existence of an infinite countable set of names,
represented by the symbols x , y , ... .

Definition

The syntax of processes is the following:

P,Q := 0 | x(y).P | x̄y .P | P + Q | P | Q | !P | (νx)P

Recursive definitions through defining equations have been replaced by
replication, and only one name is restricted at a time.

Other process constructs can be added to π-calculus, such as the match
operator (if x = y then P) or mismatch operator (if x ̸= y then P).
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π-calculus
Semantics

Semantics can be given either through labelled transitions as before, or
through congruence and reduction.
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π-calculus
Semantics: Labelled Transition Semantics

Definition

We define the set of actions (Act) as follows:

α, β := x(y) | x̄y | x̄(y) | τ

The action x̄(y) represents a bound output action: the bound name y is
sent along x .

Definition

Given an action α, we define n(α), fn(α) and bn(α) as the names
occurring in α (free/bound respectively).

A similar definition for names occurring in processes can be given.
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π-calculus
Semantics: Labelled Transition Semantics

Definition

We define the transition relation
(−)−−→ as the smallest relation which is a

subset of Proc × Act × Proc and satisfies the following rules:

S-In

x(z).P
x(y)−−→ P{y/z}

S-Out
x̄y .P

x̄y−→ P
S-Tau

τ.P
τ−→ P

S-Sum-L
P

α−→ P ′

P + Q
α−→ P ′ S-Par-L

P
α−→ P ′ bn(α) ∩ fn(Q) = ∅

P | Q α−→ P ′ | Q

S-Sum-R
Q

α−→ Q ′

P + Q
α−→ Q ′ S-Par-R

Q
α−→ Q ′ bn(α) ∩ fn(P) = ∅

P | Q α−→ P | Q ′
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π-calculus
Semantics: Labelled Transition Semantics

Definition

S-Com-L

P
x̄y−→ P ′ Q

x(y)−−→ Q ′

P | Q τ−→ P ′ | Q ′

S-Com-R

P
x(y)−−→ P ′ Q

x̄y−→ Q ′

P | Q τ−→ P ′ | Q ′

S-Repl

P |!P α−→ P ′

!P
α−→ P ′

S-Res

P
α−→ P ′ z /∈ n(α)

(νz)P
α−→ (νz)P ′

S-Close-L

P
x̄(z)−−→ P ′ Q

x(z)−−→ Q ′ z /∈ fn(Q)

P | Q τ−→ (νz)(P ′ | Q ′)

S-Open

P
x̄z−→ P ′ z ̸= x

(νz)P
x̄(z)−−→ P ′

S-Close-R

P
x(z)−−→ P ′ Q

x̄(z)−−→ Q ′ z /∈ fn(P)

P | Q τ−→ (νz)(P ′ | Q ′)
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π-calculus
Semantics: Labelled Transition Semantics

Examples of transitions

Suppose a server S controls access to a printer P and a client C
wish to use it.

Access to the printer is represented by a name z , which is originally local
to P and S ; the server S can send this private link to other processes
alongside some channel y .

The system {server, printer} can make the following transition through a
bound output action:

S-Open
ȳ z .S | P ȳ z−→ S | P y ̸= z

(νz)(ȳ z .S | P) ȳ(z)−−→ S | P
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π-calculus
Semantics: Labelled Transition Semantics

Examples of transitions

The client C can receive the name z through the same channel y ; we can
represent this through the following transition:

S-In

y(x).C
ȳ(z)−−→ C{z/x}
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π-calculus
Semantics: Labelled Transition Semantics

Examples of transitions

If we consider the system {server, printer, client} as a whole, we can say
that the client received the private link z from the server.

The link z , which used to be local to S and P, is now local to the client as
well: the scope of z has changed.
This phenomenon is called scope extension.

We can represent this with the following transition:

S-Close-L
(νz)(ȳ z .S | P) ȳ(z)−−→ S | P y(x).C

ȳ z−→ C{z/x}
( (νz)(ȳ z .S | P) ) | y(x).C τ−→ (νz)( (S | P) | C{z/x} )
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π-calculus
Semantics: Reduction Semantics

In reduction semantics, congruence relates syntactically equivalent
processes; then processes are reduced up to syntactic equivalence.

Definition

We define the congruence relation ≡ as the smallest relation over Proc,
closed under compatibility and equivalence laws, satisfying the following
axioms:

Sum-Assoc

P + (Q + R) ≡ (P + Q) + R

Sum-Unit

P + 0 ≡ P

Sum-Comm

P + Q ≡ Q + P

Par-Assoc

P | (Q | R) ≡ (P | Q) | R

Par-Unit

P | 0 ≡ P

Par-Comm

P | Q ≡ Q | P

Gabriele Cecilia (University of Milan) Process calculi 13 December 2023 37 / 46



π-calculus
Semantics: Reduction Semantics

In reduction semantics, congruence relates syntactically equivalent
processes; then processes are reduced up to syntactic equivalence.

Definition

We define the congruence relation ≡ as the smallest relation over Proc,
closed under compatibility and equivalence laws, satisfying the following
axioms:

Sum-Assoc

P + (Q + R) ≡ (P + Q) + R

Sum-Unit

P + 0 ≡ P

Sum-Comm

P + Q ≡ Q + P

Par-Assoc

P | (Q | R) ≡ (P | Q) | R

Par-Unit

P | 0 ≡ P

Par-Comm

P | Q ≡ Q | P

Gabriele Cecilia (University of Milan) Process calculi 13 December 2023 37 / 46



π-calculus
Semantics: Reduction Semantics

Definition

Sc-Ext-Zero

(νx) 0 ≡ 0

Sc-Ext-Sum
x /∈ fn(Q)

(νx)P + Q ≡ (νx)(P + Q)

Sc-Ext-Par
x /∈ fn(Q)

(νx)P | Q ≡ (νx)(P | Q)

Sc-Ext-Res

(νx)(νy)P ≡ (νy)(νx)P
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π-calculus
Semantics: Reduction Semantics

Definition

We define the reduction relation → as the smallest relation over Proc
satisfying the following rules:

R-Com

(R + x̄y .P) | (S + x(z).Q) → P | Q{y/z}

R-Par
P → Q

P | R → Q | R

R-Res
P → Q

(νx)P → (νx)Q

R-Struct
P ≡ P ′ P ′ → Q ′ Q ′ ≡ Q

P → Q
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π-calculus
Semantics: Reduction Semantics

Examples of congruences and reductions

Let’s consider the same system {server, printer, client} and describe its
behaviour with the reduction semantics.

First, we can work on the process representing the system {server, printer,
client}. Since the name z doesn’t occur free in y(x).C , we have the
following congruence:

( (νz)(ȳ z .S | P) ) | y(x).C ≡ (νz)( (ȳ z .S | P) | y(x).C ) (1)

The last process can make the following reduction through a R-Com rule,
followed by a R-Res rule:

(νz)( (ȳ z .S | P) | y(x).C ) → (νz)( (S | P) | C{z/x} )
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π-calculus
Semantics: Reduction Semantics

Examples of congruences and reductions

The process (νz)( (S | P) | C{z/x} ) is syntactically equivalent to itself by
reflexivity (2).

As a consequence, by applying a R-Struct rule we obtain the following
reduction:

(1) (νz)( (ȳ z .S | P) | y(x).C ) → (νz)( (S | P) | C{z/x} ) (2)

( (νz)(ȳ z .S | P) ) | y(x).C → (νz)( (S | P) | C{z/x} )
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π-calculus
Semantics

It can be proved that the two semantics are equivalent, in the sense given
by the following theorems:

Theorem 1

P
τ−→ Q implies P → Q.

Theorem 2

P → Q implies the existence of a Q ′ such that P
τ−→ Q ′ and Q ≡ Q ′.
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π-calculus
Behavioural Equivalence

As in the CCS, behavioural equivalence can be given by bisimilarity.

There are different notions of bisimilarity according to different definitions
of observations.
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Future works

My thesis work consists in the formalization of the aforementioned
definitions and theorems through Beluga.

Beluga is a functional programming language designed for reasoning about
formal systems. It has been developed at the Complogic group at McGill
University, led by Professor Brigitte Pientka.

In Beluga, binding constructs are encoded with a higher order abstract
syntax (HOAS). Beluga also supports contexts and contextual objects,
which can be used for hypothetical and parametric derivations. Proofs in
Beluga are represented by recursive programs, according to the
Curry-Howard isomorphism.
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Future works

More specifically, after formalizing CCS definitions, I worked on the
formalization of π-calculus syntax and semantics, following Honsell’s
approach to implement labelled transition semantics.

I’m currently working on the formalization of the theorems regarding the
equivalence of the two semantics for π-calculus.

This work contributes to the Concurrent Calculi Formalization Benchmark,
a set of benchmarks intended to stimulate the research and development
of techniques used to formalize process calculi.
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Thank You
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