

FORMAL METHODS FOR REVERSIBLE CONCURRENT CALCULI

Gabriele Cecilia

School of Computer and Cyber Sciences, Augusta University, Augusta, GA USA

REVERSIBILITY

Reversibility: the ability to undo an action or computation

Irreversible computations → heat dissipation Reversible computations → no energy loss

Domains of application:

FORMAL METHODS

Programming errors can be deadly and expensive:

Formal Methods: highest level of software correctness

- Mathematical description of the specifications of a program
- Automated and interactive theorem provers, such as:
 Rocq, Lean, Beluga, Z3, ...

CONCURRENT CALCULI

Concurrent Calculi:

- Mathematical models of concurrent systems
- A specialized domain of formal methods application

Examples: Calculus of Communicating Systems (CCS), π -calculus

Ingredients:

- Syntax: processes and communication channels
- Semantics: Labelled Transition System (LTS)

REVERSIBLE CONCURRENT CALCULI

Reversible Concurrent Calculi: models of concurrent systems in which every action can be undone

Challenges addressed:

- Recovering inputs from outputs in a memory-efficient way
- Complexity of undoing computations in concurrent systems

Features:

- Syntax enriched with a memory or communication keys
- Semantics given by forward and backward transitions

Loop lemma:

For all $t: X \xrightarrow{\theta} Y$, there exists $\underline{t}: Y \xrightarrow{\theta} X$, and conversely. Furthermore, $\underline{t} = t$.

Example of processes and transitions:

RESEARCH PROJECT

This project is aimed at the study and the improvement of existing reversible concurrent calculi, together with the formalization of their definitions and properties.

Example of formalization:

Syntax of CCSK (CCS with Keys)		Beluga Formalization
X,Y ::=		LF proc: type =
0	(Inactive)	null: proc
αX	(Prefix)	pref: labels $ ightarrow$ proc $ ightarrow$ proc
$ \alpha[k].X$	(Keyed prefix)	kpref: labels $ ightarrow$ keys $ ightarrow$ proc $ ightarrow$ proc
X+Y	(Sum)	sum: proc $ ightarrow$ proc $ ightarrow$ proc
X Y	(Parallel composition)	par: proc $ ightarrow$ proc $ ightarrow$ proc
$ X \setminus a $	(Restriction)	nu: (names $ ightarrow$ proc) $ ightarrow$ proc;

Publications:

• G.C. (2025): A Formalization of the Reversible Concurrent Calculus CCSK^P in Beluga. ICE 2025.

POSSIBLE FUTURE WORK DIRECTIONS

- Extending the formalization of CCSK^P, e.g., by encoding bisimulations
- Providing formal definitions of constructs representing infinite behavior for reversible concurrent calculi
- Formalizing the key results presented in "An axiomatic theory for reversible computation" by Lanese, Phillips & Ulidowski

ACKNOWLEDGMENTS

This research project is supported by the National Science Foundation under Grant No. 2242786 (SHF:Small:Concurrency In Reversible Computations).